Trading Routing Diversity for Better Network Performance

Xiaoyu Zhang, Wei Dong*, and Wei Ren
College of Computer Science, Zhejiang University
Email: {zhangxy, dongw, renwei}@emnets.org

Abstract—Most sensor networks employ distributed and dynamic routing protocols. The flexibility that each node can choose the best forwarder from a diverse candidate set could offer excellent routing performance when the network is highly dynamic. However, it sacrifices routing predictability since it is possible that routing loops are frequently formed. Can we increase the network predictability by controlling the network? As a step towards solving this problem, we introduce FlexCut, a flexible approach for cutting off wireless links, which essentially limits the candidate forwarder set of each node. Unlike existing SDN solutions, FlexCut introduces flexible control over existing distributed and dynamic routing protocols. FlexCut can trade arbitrary amounts of routing diversity for better network performance by exposing to network operators a parameter which quantifies the aggressiveness. We propose novel algorithms, both centralized and distributed, to cut off user-defined number of links so that loops can be alleviated while routing flexibility can be preserved to the largest extent. We evaluate FlexCut extensively by both testbed experiments and simulations. Results show that FlexCut improves the performance by 40% ∼ 90% compared with a baseline algorithm in terms of our optimization goal. Results also show that FlexCut can improve the network performance of a sensor network by 20% ∼ 35%, 30% ∼ 50%, 25% respectively, in terms of packet delivery ratio, transmission delay and radio duty cycle.

I. INTRODUCTION

Most sensor networks employ distributed and dynamic routing protocols. In these protocols, each node makes its own decisions on choosing its next-hop forwarder (i.e., parent) and the overall routing topology can be dynamically optimized with environmental changes. The TinyOS CTP protocol [1] is an instance of distributed and dynamic routing protocol with which each node regularly estimates the expected number of transmissions (ETX) [2] to the sink and dynamically selects the next-hop forwarder with the minimum ETX along the path.

The flexibility that each node can choose the best forwarder from a diverse candidate set could offer excellent routing performance when the network is highly dynamic since the node can easily switch its forwarders. However, it sacrifices routing predictability since it is possible that routing loops can be frequently formed. This is because the routing information maintained by each node cannot always be up-to-date and each node does not have a consistent view of the entire network.

*This work is supported by the National Science Foundation of China under Grant No. 61472360, National Key Technology R&D Program (Grant No. 2014BAK15B02), CCF-Intel Young Faculty Researcher Program, CCF-Tencent Open Research Fund, the Fundamental Research Funds for the Central Universities (No. 2016ZZS010), and China Ministry of Education–China Mobile Joint Project under Grant No. MCM20150401. Wei Dong is the corresponding author.

Once there are routing loops in the network, the performance rapidly degrades.

GreenOrbs [3] and CitySee [4, 5] are two real sensor network systems consisting of 400+ and 1198 sensor nodes respectively. Researchers find that the network performance is unpredictable. In particular, routing loops can frequently be formed and once the loop happens, the energy is wasted on forwarding packets involved in the loop. For example, Fig. 1 shows that a particular node in GreenOrbs experiences a high radio duty cycle when its measured loop counter is high.

Can we increase the network predictability by controlling the network? The idea of Software-Defined Networking (SDN) can increase the network predictability as it enables centralized and direct control of the forwarding behavior. There are, however, significantly challenges in directly applying SDN to sensor networks since existing solutions for networks with IP-based forwarding cannot well adapt to high dynamics in wireless ad hoc networks.

As a step towards solving this problem, we introduce FlexCut, a flexible approach for cutting off wireless links, which essentially limits the candidate forwarder set of each node. Unlike existing SDN solutions [6], FlexCut introduces flexible control over existing distributed and dynamic routing protocols. FlexCut can trade arbitrary amounts of routing diversity for better network performance by exposing to network operators a parameter α which quantifies the aggressiveness. In its most conservative form ($\alpha = 0$), no link is cut off so that the largest routing flexibility can be preserved. In its most aggressive form ($\alpha = 1$), FlexCut cuts off the minimum number of links so that the largest predictability can be achieved by guaranteeing that routing loops can never occur.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{The loop counter and radio duty cycle of a particular node in GreenOrbs [3].}
\end{figure}
By specifying and tuning this parameter, network operators can conveniently control the routing behaviors of the network.

We model the network as a directed graph with link weights. Each node in the graph points to its candidate forwards. In the original graph, packets can follow directed links that form loops. The goal of FlexCut is to cut off user-defined number of links (determined by the aggressive parameter α) so that loops can be alleviated while routing flexibility can be preserved to the largest extent. We find that even a particular instance of our problem is NP-hard by reducing to the minimum feedback arc set problem (FAS). Existing heuristic solutions for FAS [7–9] cannot directly be applied because (1) they do not guarantee the connectivity from every node to the sink node; (2) they do not consider link weights. We propose novel algorithms for addressing these problems. Centralized algorithms incur large communication overhead. To reduce this overhead, we further propose a distributed algorithm in which each node locally cuts off the links in a distributed manner after receiving the network-level aggressiveness parameter.

We propose an abstraction called FlexCut which includes a series of algorithms. aCut ($\alpha = 1$) and gCut ($0 \leq \alpha \leq 1$) are both centralized algorithms while dCut ($0 \leq \alpha \leq 1$) is a distributed algorithm. We implement our algorithms above the link layer and below the network layer (i.e., L2.5) so that they can potentially benefit many other routing protocols, e.g., the more recent RPL protocol [10]. We evaluate FlexCut extensively by both testbed experiments and simulations. Results show that FlexCut improves the performance by $40\% \sim 90\%$ compared with a baseline algorithm in terms of our optimization goal. Results also show that FlexCut can improve the network performance of a sensor network by $20\% \sim 35\%$, $30\% \sim 50\%$, 25% respectively, in terms of packet delivery ratio, transmission delay and radio duty cycle.

We summarize our contributions as follows:

- We propose an abstraction for controlling the routing behavior of a sensor network. The abstraction can trade arbitrary amounts of routing diversity for better network performance.
- We propose novel algorithms, both centralized and distributed, for cutting off user-defined number of wireless links.
- We implement FlexCut and evaluate its performance by both testbed experiment and simulations. Results show that FlexCut can significantly improve the network performance in terms of three primary metrics.

The rest of this paper is structured as follows. Section II introduces the related work. Section III gives a motivating example. Section IV gives the network model and notations used in this paper. Section V formulates our problems. Section VI presents the centralized algorithm. Section VII presents the distributed algorithm. Section VIII shows the evaluation results. Section IX concludes this paper and gives future research directions.

II. RELATED WORK

Our work introduces flexible control over distributed routing in sensor networks. We first introduce representative routing protocol and then the control mechanisms over these protocols.

A. Routing protocols

Most sensor networks employ distributed and dynamic routing protocols [1, 10, 11]. CTP [1] is the default routing protocol in TinyOS. It is a distance vector routing protocol with the routing metric being ETX [2] which is the expected number of transmissions over a path. In their experiments, the authors of CTP also noticed that link dynamics and transient loops are two dominant factors for the poor data collection performance. The more recent RPL [10] protocol is a routing protocol specifically designed for Low power and Lossy Networks (LLN) compliant with the 6LoWPAN protocol. In RPL, loop could occur when a node loses its parents and selects the node in its own sub-DODAG (Destination Oriented DAG) as the new parent. This might happen particularly when DIO (DODAG Information Object) messages are lost. Both CTP and RPL employ data path validation and topology repair mechanisms when loops occur while our approach tries to limit the formation of loops in the first place.

There are routing protocols for sensor networks, e.g., opportunistic routing [12–14], and backpressure routing [15]. In opportunistic routing, any node in the forwarder set can help forward the packet when it opportunistically receives the packet. It is possible that temporary loops can occur. In backpressure routing, routing decisions are made to (roughly) minimize the sum of squares of queue backlogs in the network from one timeslot to the next. Backpressure routing is theoretically proved throughput optimal and there are tremendous works in adapting it to different scenarios. However, backpressure routing may have poor delay performance when packets traverse loops in the network. Our work is helpful for both opportunistic routing and backpressure routing.

There are loop-free routing protocols. AODV [16] uses destination-generated sequence numbers to synchronize routing topology changes and prevent loops. The tradeoff is that when a link goes down, the entire subtree whose root used that link is disconnected until an alternate path is found. Loop free backpressure (LFBP) [17] is a protocol that forwards packets along directed acyclic graphs (DAGs) to avoid the looping problem. Our algorithm can also be used for constructing the needed DAG. Different loop-free routing protocols essentially trade different levels of diversity for forwarding the packets. For a particular loop-free routing protocol, a fixed tradeoff is usually made. Our current work provides an abstraction which can trade arbitrary diversity for better network performance. Moreover, our current work resides in the 2.5 layer and could benefit many other Layer 3 routing protocols.

Bloom filters can be employed to prevent loops. In [18, 19], an extra Bloom filter field is added into the data packets to record the routing path so that already traversed nodes would not be selected again. A key difference between FlexCut and bloom-filter-based forwarding is when to avoid the loops. FlexCut, in its most aggressive form, avoids loops before the routing actions taking place. Bloom-filter-based forwarding, on the contrary, avoids loops during the routing process. It is possible that bloom-filter-based forwarding may not be able to find a loop-free path towards the sink.

B. Control over routing

There are many research efforts to enforce control over routing protocols. SDN is an approach to computer networking that allows network administrators to manage network services
through abstraction of lower-level functionality. With SDN, administrators can easily control the forwarding behaviors of the network [6, 20]. SDN has also been applied in sensor networks [21–23].

Luo et al. propose Sensor OpenFlow [21], a software-defined routing architecture for sensor networks. This architecture is similar to the SDN architecture for the Internet. The routing action defines the specific routing action for the matched packets, e.g., forward to a specific port or drop the packets. A centralized controller uses a customized version of OpenFlow to interact with the sensor nodes. While Sensor OpenFlow borrows ideas from OpenFlow, it addresses WSN-specific challenges such as how to create flows, how to reduce control traffic, and how to incorporate in-network processing. SDN-WISE [22] is another recent work that presents a SDN solution for wireless sensor networks. Different from the existing SDN solutions for wireless sensor networks, SDN-WISE is stateful and makes sensor nodes programmable as finite state machines, thus enabling them to run operations that cannot be supported by stateless solutions. Although these approaches implement mechanisms for flexibly controlling each node’s forwarding behavior, they do not provide high-level abstractions for achieving network-level requirements, e.g., loop-free. Moreover, these approaches require individually controlling each node’s forwarding behavior, introducing large control overhead.

TeleAdjusting [24] is a ready-to-use protocol to remotely control any individual node in a WSN. Our work can employ the TeleAdjusting protocol for notifying each node the blacklisted forwarders. pTunes [25] is a framework for runtime adaptation of low-power MAC protocol parameters. pTunes improves the performance of WSN by automatically determining optimized parameters based on application requirements. Different from pTunes, our current work focuses on reshaping the network topology rather than MAC-layer parameters. As described in [26], the network topology can have significant impacts on the overall network performance. In our future work, we would like to consider other factors impacting the network performance.

III. MOTIVATING EXAMPLE

To illustrate the motivation of our work, we consider the example network shown in Fig. 2(a). In this figure, S denotes the sink node while A and B denote the ordinary nodes delivering data to the sink. The figures on the links denote the long-term link qualities. In most cases, B transmits data via path B–S and A transmits data via path A–B–S. A’s path-ETX is 2.2 and B’s path-ETX is 1.1. However, it is possible that the link quality of BS suddenly degrades to 0.1. In this case, a temporal loop occurs since B will choose A as its parent (update its path-ETX as 3.3) and A insists on choosing B (update its path-ETX as 4.4). This is known as the classic count-to-infinity problem. In order to avoid the unpredictable performance caused by temporal loops, we would like to prevent the formation of loops by cutting off some links. For example, if the link BA is cut off, it is guaranteed that there will be no loops.

However, it is not always desired that we simply transform the network into a DAG. Cutting off links means fewer possibilities for parent selection. In Fig. 2(a), B has two choices while in Fig. 2(b), B has only one choice. It is possible that the original network (Fig. 2(a)) yields better performance than the DAG (Fig. 2(b)). Consider the case when the link BS suddenly degrades to 0.1 and the link AS suddenly increases to 1. For the DAG network, the data delivery performance of B also degrades. For the original network, the data delivery performance of B keeps high since there will be no loop as A chooses S directly.

This motivates us to design a general method for cutting off user-defined number of links. We would expect that network operators can use our abstractions via a configurable parameter: Flexcut(α). The value of α determines the user-defined number of links. When α = 1, our method will transform the original network into a DAG while maintaining the maximal forwarding diversity. When α = 0, our method will cut off no links.

IV. NETWORK MODEL

We model the network as a directed graph G(V, E) where V is the set of nodes/vertices, and E is the set of directed links/edges, pointing from a node to its candidate forwarder/parent. The candidate forwarder set of a node u is denoted as F(u). The child node set of a node u is denoted as Ch(u). We denote the link that incidents to vertices u and v by uv where v ∈ F(u). Each link has a link weight, being the long-term link quality of that link. We denote the link quality of uv as q_{uv}.

We would like to cut off a set of links in G to limit the formation of loops. We use C to denote the set of links to be cut off. The resultant graph is denoted as G'.

We introduce the following notations:

- Diversity. The diversity of a node quantifies the probability that a node can successfully forwards the data to one forwarder. We use the following equation to define u’s diversity:

\[
D_F(u) = 1 - \prod_{v \in F(u)} (1 - q_{uv})
\]

where F denotes the forwarder set of u. For the example shown in Fig. 2(b), B’s diversity is 0.9. For the example shown in Fig. 2(a), B’s diversity is 0.99. We can see that increasing the forwarder set increases the diversity as a node has more choices for forwarding its data.

- Reduction ratio of diversity. The reduction ratio of a node’s diversity quantifies how much the diversity degrades by cutting off some links. We use the following equation to define u’s reduction ratio of flexibility.
diversity:

\[R_C(u) = \frac{D_F(u) - D_{F'}(u)}{D_F(u)} \] \hspace{1cm} (2)

where \(C \) denotes the set of cutoff links, \(F \) denotes the forwarder set of \(u \) in the original graph and \(F' \) denotes the forwarder set of \(u \) in the graph with edges in \(C \) are removed.

V. PROBLEM FORMULATION

We first formulate the problem in the most aggressive form, i.e., cut off links to guarantee no loops exist. We then formulate the problem in the general form in which the number of cutoff links are user-defined.

A. Problem in the most aggressive form

In the most aggressive form, we would like to transform the original graph into a DAG so that no loops can occur. We also need to guarantee that every node has forwarding paths towards the sink. The constraint is that we would like to minimize the maximum diversity reduction ratio so the parent selection flexibility will not be significantly affected for any node in the network.

The problem is formulated as follows:

Input The weighted directed graph \(G \)

Output The set of cutoff links \(C(G) \)

Goal \(\min_{u \in V} \max \{ R_C(u) \} \)

s.t. 1. \(\forall u \in V, \exists \) a direct path from \(u \) to the sink in \(G' \).

2. \(G' \) is a DAG.

We denote the solution of this problem as \(C_1 \).

B. Problem in the general form

In the general form, we would like to cut off user-defined number of links to limit the impact of potential routing loops. For this purpose, we introduce a user-defined aggressiveness parameter \(\alpha \). We also need to guarantee that every node has forwarding paths towards the sink. The constraint is similar, i.e., to minimize the maximum diversity reduction ratio.

The problem is formulated as follows:

Input 1. The weighted directed graph \(G \).

2. The aggressiveness parameter \(\alpha \).

Output The set of cutoff links \(C_\alpha(G) \).

Goal \(\min_{u \in V} \max \{ R_{C_\alpha}(u) \} \)

s.t. 1. \(\forall u \in V, \exists \) a direct path from \(u \) to the sink in \(G' \).

2. \(C_\alpha \subset C_1 \) and \(|C_\alpha| = \alpha|C_1|\).

We can see that this problem formulation is general: when \(\alpha = 0, G' = G \) and the original network is unchanged; when \(\alpha = 1 \), the problem is similar to that in the most aggressive form, guaranteeing that no loop can occur.

We observe that cutting more edges from the original topology leads to larger diversity reduction. So intuitively, we should cut a small number of edges in order to minimize the maximum reduction radio of diversity. The formulated problem in the most aggressive form is similar to a well-studied NP-complete problem called minimum feedback arc set (FAS) whose goal is to find a minimum edge set \(C \) from a directed graph \(G \) such that \(G - C \) is a DAG.

VI. CENTRALIZED ALGORITHM

In this section, we would like to develop centralized algorithms to solve the problems formulated in the previous section. We first develop algorithms for the first problem, i.e., to find the most appropriate edge set \(C_1 \). We then develop algorithms for the second problem, i.e., to find the most appropriate subset of edges \(C_\alpha \) from \(C_1 \). Finally, we discuss some practical issues.

A. Algorithm for the first problem

We would like to borrow existing algorithms for the FAS problem to solve our problem. Unfortunately, existing algorithms do not address the following challenges:

- How to ensure a directed path from every node to the sink?
- How to consider link weights?

We use the example shown in Fig. 3 to illustrate these challenges. The key idea of a heuristic algorithm for the minimum FAS problem is to sort the network vertices into a sequence according to a specific strategy, from the highest rank (sequence head) to the lowest rank (sequence tail). The edges from a high rank to a low rank remain in the DAG, and edges from a low rank to a high rank are removed from the original graph. In this way, the resultant graph is a DAG. Formally, the following rules are applied to determine the output sequence.

- Put the nodes with zero out-degree at the tail of the sequence.
- Put the nodes with zero in-degree at the head of the sequence.
- Sort the nodes according to a metric \(m \) which is defined as the difference of in-degree and out-degree of a node, say \(u \), i.e., \(m(u) = d_u(u) - d_{out}(u) \). The nodes with large metric values are put near the tail of the sequence.
- Remove the node and its associated edges whenever it is put into the sequence.

After applying the above algorithm into the network shown in Fig. 3(a), the output sequence will be \{ \(A, C, E, D, B, S \) \}. Therefore, the cutoff links are \(C = \{ BA, DC \} \). The resultant DAG is shown in Fig. 3(b).

We can observe two significant problems in this algorithm. (1) It does not ensure a directed path from every node to the sink. For example, in the resultant DAG shown in Fig. 3(b), nodes \(B, C, D, E \) have no directed path to the sink, implying that we can not collect data from these nodes. It is unacceptable. (2) It leads to low forwarding performance since it does not consider link weights. For example, in the resultant DAG shown in Fig. 3(b), a high quality link \(DC \) (with link quality 0.9) is cut off, resulting in a high diversity reduction ratio at node \(D \): \(R_{[BA,DC]}(D) = \frac{0.85 - 0.5}{0.85} = 0.45 \). If two low quality links \(CD, CE \) were cut off while \(DC \) remains in the graph (the resultant graph is also a DAG), the impact to node \(C \) would be much smaller, i.e., \(R_{[BA,CD,CE]}(C) = \frac{0.888 - 0.8}{0.888} = 0.011 \).

In order to address the above two challenges, we propose a novel algorithm. In each step, our algorithm explicitly considers connectivity to the sink when a node is to be added near the tail of the sequence, ensuring there exists a directed path between a node and the sink. Our algorithm adopts a new
metric to consider wireless link qualities and node forwarding diversity so that the maximum diversity reduction ratio is kept small.

The new metric, *diversity preserving ratio*, is defined by the following formula:

\[
m'(u) = \frac{D_{F'(u)}(u)}{D_{F(u)}(u)}
\]

(3)

where \(F'(u)\) denotes the forwarder set of \(u\) with each element already in the tail of the sequence during the execution of the algorithm when a set of backedges have already been removed.

For example, we use Fig. 2(a) to show the case during the execution of the algorithm. Both nodes A and B have two outgoing edges in the original graph. In the current step, both A and B have outgoing edges pointing to S which is a node already in the tail of the sequence. If A were added into the tail of the sequence in this step, edge AS will remain in the final DAG and the other outgoing edge AB will not exist in the final DAG. In this step, \(m'(A) = 0.2\) and \(m'(B) = 0.9\) according to the definition of the metric defined in Eq. (3). The algorithm tends to put the node with large metric value near the tail of the sequence, i.e., B in this case. The reason is explained as follows:

1) If we put B into the tail of the sequence in this step, the diversity reduction ratio of B is 0.9 and the diversity reduction ratio of A is at most 0.52. Hence the maximum diversity reduction ratio among A and B is at most 0.52.

2) If we put A into the tail of the sequence in this step, the diversity reduction ratio of A is 0.72 and the diversity reduction ratio of B is at most 0.9. Hence the maximum diversity reduction ratio among A and B is exactly 0.72.

Since our goal is to minimize the maximum diversity reduction ratio in the network, the first strategy is preferred since it yields better performance than the second strategy.

Algorithm 1 shows the pseudocode of our algorithm. The input of the algorithm is a weighted directed graph \(G(V,E)\) which represents the network topology. The output of the algorithm is the set of cutoff links \(C\) whose removal transforms the graph into a DAG.

Algorithm 1 Aggressive Cutoff Algorithm (aCut)

Input: Weighted directed graph \(G(V,E)\)

Output: Set of cut edges \(C\)

1: \(C \leftarrow \phi\);
2: \(s_1 \leftarrow \phi;\ s_2 \leftarrow \text{sinkNode};\)
3: \(P \leftarrow \text{set of nodes having outgoing edges to sinkNode};\)
4: \(\text{while } |s_1| + |s_2| < |V| \text{ do}\)
5: \(\text{for } u : u \in V - s_1 - s_2 \&\& \text{Ch}(u) \subseteq (s_1 \cup s_2) \text{ do}\)
6: \(s_1 \leftarrow s_1 \cup u;\)
7: \(u \leftarrow \arg \max_{u \in P} m'(u) \text{ where } m'(u) \text{ is given in Eq.3.}\)
8: \(s_2 \leftarrow u s_2;\)
9: \(P \leftarrow P - \{u\};\)
10: \(\text{for } u : u \in V - s_1 - s_2 \&\& (\exists v \in s_2 : uv \in E) \text{ do}\)
11: \(P \leftarrow P \cup \{u\};\)
12: \(s \leftarrow s_1 s_2;\)
13: \(\text{for each } uv \in E \text{ do}\)
14: \(\text{if } v \text{ is on the left of } u \text{ in } s \text{ then}\)
15: \(C \leftarrow C \cup \{uv\};\)
16: \(\text{return } C.\)

We use the example shown in Fig. 3(a) to illustrate the working details of Algorithm 1. Initially, \(C = \phi, s_1 = \phi,\ s_2 = \{S\},\) and \(P = \{A\} \). Then we start the while loop.

- First iteration. There’s no node satisfying condition specified in line 5. The algorithm adds A to the front of \(s_2\) since A is the only node in P. P is updated to \(\{B\}\). Hence, the maximum diversity reduction ratio among A and B is at most 0.52.

- Second iteration. There’s no node satisfying condition specified in line 5. The algorithm adds B to the front of \(s_2\) since B has outgoing edges to A. After this iteration, \(s_1 = \phi, s_2 = \{A,S\}\).

- Third iteration. There’s no node satisfying condition specified in line 5. Now there are two candidates, C and D, to be processed. According to Eq. (3), \(m'(C) = 0.6\) and \(m'(D) = 0.5\). Hence, the algorithm adds C to the front of \(s_2\). P is updated to \(\{D\}\). After this iteration, \(s_1 = \phi, s_2 = \{C,B,A,S\}\).

- Fourth iteration. The algorithm adds E to the tail of \(s_1\) since its only child node C has already been in \(s_2\). The algorithm continues to add D to the tail of \(s_1\) since...
Algorithm 2: Generalized Cutoff Algorithm (gCut)

Input: Weighted directed graph $G(V,E)$, parameter $\alpha \in [0,1]$

Output: Set of cut edges C_α

1. $C_\alpha \leftarrow \text{aCut}(G)$
2. $\text{NumLinks} \leftarrow \alpha |C_\alpha|$
3. **while** $|C_\alpha| > \text{NumLinks}** do
4. $P \leftarrow \text{set of nodes whose outgoing links exist in } C_\alpha$
5. $u \leftarrow \arg \max_{v \in P} R_{C_\alpha}(u)$
6. $v \leftarrow \arg \max_{u \in C_\alpha} q_{uv}$
7. $C_\alpha \leftarrow C_\alpha - \{uv\}$
8. return C_α

D’s child nodes, C and E, are already in s_1 or s_2. P is updated to $s_1 = (E, D)$ and $s_2 = (C, B, A, S)$. The algorithm terminates because s_1 and s_2 include all the nodes in the network.

The final sequence is (E, D, C, B, A, S) and $C = \{AC, AB, CD, CE\}$. The resultant graph is shown in Fig. 3(d). The maximum diversity reduction ratio is $R_{\{AC, AB, CD, CE\}}(C) = 0.088$.

In order to see the benefits of our algorithm, we also implement an enhanced Eades’ algorithm (EEA) which uses the metric of $m(u) = d_{in}(u) - d_{out}(u)$ while ensuring directed paths between every node to the sink. The resultant graph is shown in Fig. 3(c). The maximum diversity reduction ratio is $R_{\{AB, AC, DC\}}(D) = 0.45$. We can see that our algorithm results in significantly better performance than EEA.

B. Algorithm for the second problem

Based on the algorithm developed in the previous section, we would like to develop an algorithm for the general problem formulated in Section V. For this problem, there is an aggressive parameter α, which is used to limit the number of cutoff links. Our algorithm first finds out the set of cutoff links C_1 whose removal transforms the network into a DAG. Then the algorithm greedily removes links from C_1. Those links will be reserved in the resultant graph. In each step, the algorithm selects the link which can most effectively decrease the value of our optimization function, i.e., the maximum diversity reduction ratio.

Algorithm 2 shows the pseudocode of our algorithm. The input of our algorithm is a weighted directed graph G and an aggressive parameter in the range of [0, 1]. The output of our algorithm is a set of cutoff links C_α. The number of cutoff links depends on the aggressiveness parameter: when $\alpha = 0$, $C_\alpha = \emptyset$; when $\alpha = 1$, $C_\alpha = C_1$.

We use the example shown in Fig. 3(d) to illustrate the working details of Algorithm 2. Suppose $\alpha = 0.5$. Initially, $C_{0.5} = \{AB, AC, CD, CE\}$, NumLinks=2.

- First iteration. $P = \{A, C\}$. $R_{C_{0.5}}(A) = 0.096$ and $R_{C_{0.5}}(C) = 0.088 > R_{C_{0.5}}(A)$. We delete CE which is the best outgoing edge of node C in $C_{0.5}$.
- Second iteration. $R_{C_{0.5}}(C) = 0.088 < R_{C_{0.5}}(A)$. We delete edge AB from $C_{0.5}$.

As the result, $C_{0.5} = \{AC, CD\}$ as opposed to $C_1 = \{AB, AC, CD, CE\}$.

C. Practical Issues

The centralized algorithm runs at the PC backend. There are several practical issues.

How to collect the network topology with link weights (to the sink node and then to the PC backend)? Each node can maintain its neighborhood information. Such neighborhood information (e.g., its candidate forwarders and the corresponding long-term link qualities) can be transmitted to the sink node via multihop communication, using a data collection protocol (e.g., CTP [1]).

How to inform each individual node to cut off the links? The sink should find the path to an individual node to inform it to cut off the links originated from this node. For example, the network could employ the Tele Adjusting protocol [24] in which a packet used for remote control is forwarded along a cost-optimal path.

How to deal with network dynamics, such as node additions and deletions? When a node is added to the network, the node can report its neighborhood information to the sink. When sink finds that the network topology (i.e., the input) changes, it recomputes the cutoff links. The sink then informs each individual node to take the new actions, e.g., remove new links or recover old removed links. When a node is removed from the network, its neighbor can detect this phenomenon and informs the sink node which can again recompute the new result.

VII. DISTRIBUTED ALGORITHM

As we have mentioned in the previous section, the centralized algorithm has relatively large communication overhead since it runs on the PC backend and requires collecting messages for building the whole network graph as well as transferring messages for controlling the routing behaviors of the individual node.

To address this limitation, we propose a distributed algorithm with which each node decides to cut off its own outgoing links based on its local information after receiving a network-wide aggressive parameter α.

The key strategy of the centralized algorithm is to sort the nodes according to its metric value into a sequence. The cutoff links are those backedges defined by the sequence, i.e., edges from right to left. In order to cut off links at an individual node, the node only needs to know its relative position to its candidate forwarders in the final sequence. To determine such relative positions, we need to address the following challenging problems.

When to compute the metric value? We let the node compute its metric value when one of its forwarders has been added to the tail of the final sequence. A node receives notifications about its neighbors’ status (i.e., whether the neighbor enters the sequence tail) via message exchanges. In this way, a node can be added to the sequence tail only when at least one of its forwarders exists in the sequence tail, ensuring a directed path exists towards the sink.

How to compute the metric value locally? We let a node maintain its neighborhood information, e.g., its candidate forwarders, the link qualities to these forwarders. A node also receives its forwarder's status information, i.e., whether the forwarder has already entered the sequence tail. All links to the forwarders in the sequence tail are reserved in
the resultant topology while links to other forwarders are temporally unavailable in the resultant topology. A node uses such information to compute and update its metric value. The metric value converges to the correct value only when the node possesses the maximum metric value and enters the sequence tail in the current step.

How to elect the node with the maximum metric value? A node will periodically broadcast its metric value. Other node receiving this metric value judges whether its metric value is larger than the metric value overheard. If yes, the node will remain in the contention phase, attempting to overhearing more metric values. If a sufficient long time period, say τ_c, has passed and the node does not hear any message having a larger metric value, the node is elected out and it is added to the sequence tail. Otherwise, the node helps propagating the overheard larger metric value so that more nodes can learn this fact. Since each node maintains the largest metric value it has learnt, this value must be invalidated once the corresponding node has been added to the sequence tail. It is possible that two or more nodes elect themselves out in the same step because they did not overhear other larger metric value. The distributed algorithm works correctly in this case since only forward edges remain in the network and there are no chances that there are routing loops between those nodes. However, there will be performance degradations since links between those nodes may be unnecessarily removed. In our implementation, we can optimize the setting of broadcast timer so that the chances of control message losses are small.

The detailed description of our distributed algorithm can be found in our technical report [27].

There are three parameters τ_b, τ_c, τ_i in the distributed algorithm. τ_b is the time period for broadcasting control messages. τ_c is the time period for electing the node with the maximum metric value. If τ_c were large enough for getting notification from any node in the network, the order of the final sequence will be the same as the centralized algorithm. However, a large τ_c value can cause a long execution time for cutting off the links. In practice, we set τ_c multiple times of τ_b. τ_i is the time period for invalidating the metric value of an already elected node. In practice, we set τ_i several times of τ_b. Without explicitly specified, we set $\tau_b = 1$ min, $\tau_c = 10$ min, and $\tau_i = 3$ min in the default implementation of the distributed algorithm.

VIII. EVALUATION

We implement FlexCut based on the TinyOS 2.1.2/TelosB platform. There are two versions: centralized and distributed. We evaluate our algorithms in terms of four metrics:

- Maximum diversity reduction ratio (MDRR): it is the optimization goal of our algorithm and is used to evaluate the theoretical performance of various algorithms.
- Packet delivery ratio (PDR): it is the successful packet reception ratio from a given node to the sink node. It is one of the most important network metrics.
- Packet transmission delay: it is the total transmission delay from a given node to the sink node. It is one of the most important network metrics, especially for real-time applications.
- Radio duty cycle ratio: it is the percentage of radio on time for a given sensor node. Radio duty cycle ratio represents the energy consumption on a sensor node since typical sensor networks employ low duty cycling to save energy and radio communication consumes the most energy on a sensor node.

In Section VIII-A, we conduct experiment in one indoor testbed consisting of 80 TelosB nodes. In Section VIII-B, we conduct comparative study in different network configurations. In Section VIII-C, we experimentally study the impact of α on the performance of our algorithms.

A. Testbed experiment

We use an indoor experiment consisting of 80 TelosB nodes (see Fig. 4) for the experiment. The inter-node spacing is 0.6m and the power level of the radios is configured to 1 in order to simulate multihop behaviors. We use the CTP protocol for data collection: each node generates data packets every 30 seconds.

Fig. 5 shows the transmission overhead of the centralized algorithm and the distributed algorithm (with $\alpha = 1$). We can see that the transmission overhead of the centralized algorithm is much larger than the distributed algorithm due to extra overhead in the topology collection process and the remote control process. In the distributed algorithm, we also observe that (1) the control traffic load is distributed evenly in the network (unlike centralized algorithms with which the nodes near the sink frequently participate in forwarding the control packets), (2) the network nodes can concurrently cut off links at different locations, resulting in smaller response time for network control.

For the testbed experiment setting, it is difficult to show the improvement of our algorithm due to relatively small network scale and low routing dynamics. We artistically inject loops
B. Comparative Study

We perform comparative study on the following algorithms.

- Enhanced Eades’ Algorithm (EEA). EEA ensures that every node has a directed path towards the sink. Note that EEA does not consider link weights.
- aCut. Our centralized algorithm with $\alpha = 1$ (Algorithm 1).
- gCut. Our centralized algorithm with $0 \leq \alpha \leq 1$ (Algorithm 2).
- dCut. Our distributed algorithm.
- Bloom-filter-based forwarding (BFF). BFF is a simple approach to attach each packet a bloom filter for recording the already traversed nodes. At each forwarder node, the routing decision should try to avoid selecting the next-hop nodes in the bloom filter. If the Bloom filter contains all the possible forwarders, the node randomly selects a forwarder. The Bloom filter is set to 64 bits.

We evaluate different algorithms in different topologies:

- 36-node. We generate this topology by the topology generation tool in the TinyOS distribution. We deploy 36 nodes in a 20m × 20m area, which is divided into 36 squares. Each node is randomly deployed in one square. We obtain the link weight by mapping the SNR to its corresponding packet reception ratio.
- 196-node. We also generate this topology by the topology generation tool in the TinyOS distribution. We deploy 196 nodes in a 35m × 35m area, which is divided into 196 squares. Each node is randomly deployed in one square.
- 400-node. We generate this topology by the topology generation tool in the TinyOS distribution. We deploy 400 nodes in a 40m × 40m area, which is divided into 400 squares. Each node is randomly deployed in one square.
- GreenOrbs. We extract the topology from a real sensor network deployment with over 400 sensor nodes.

Comparison in terms of MDRR. Fig. 7 shows the performance of different algorithms (with $\alpha = 1$) in terms of the maximum diversity reduction ratio in four different network topologies. For the 36 node topology, we also show the optimal results which are obtained by enumerating all possibilities. From Fig. 7(a), we can see that the performance of our centralized algorithm is very similar to the optimal result. In all the network topologies, our centralized algorithm achieves the best performance. For the distributed algorithm, the parameter τ_c has a great impact. For a small value of $\tau_c = 5$ min (dCut(5)), it is possible that a node mistakenly believes it has the maximum metric value and is elected. Therefore, there is a large performance gap from the centralized algorithm. For a relatively large value of $\tau_c = 15$ min (dCut(15)), the performance of the distributed algorithm is close to that of the centralized algorithm.

Comparison in terms of PDR and delay. Fig. 8 shows the comparison results in terms of packet delivery ratio. We compare our distributed algorithm with EEA and BFF. We can see that (1) the EEA algorithm always results in a low PDR. This is because EEA does not consider link qualities. (2) BFF’s PDR decreases in larger networks. It is possible that BFF may not be able to find a loop-free path towards the sink. For the example shown in Fig. 3(a), packets from D will follow the path DCBAS under the normal condition. However, when the link CB severely degrades (e.g., disconnected), D may not instantly recognize this fact. D continues to forward packets to C while C forwards the packet to E since C recognizes that the link CB is already disconnected. At forwarder E, the only feasible next hop node is D. However, the selection of D will
inevitably cause a routing loop of DCED. (3) PDRs of FlexCut with different parameters are different. We will carefully study the impact of the α parameter in Section VIII-C.

Fig. 9 shows the comparison results in terms of transmission delay. We observe (1) BFF results in a high transmission delay, especially in large network. This is partly because the randomly chosen forwarders result in poor performance when Bloom filter is limited in size and already contains all possible forwarders. (2) Delays of FlexCut with different parameters are different. In particular, delays of EEA and FlexCut with $\alpha = 1$ increase in large networks (e.g., 400-node network).

C. Impact of α

We examine the impact of the α parameter on three primary sensor network metrics, packet delivery ratio (PDR), transmission delay, and radio duty cycle. We perform simulation studies in a 400-node topology. We combine our distributed algorithm with CTP protocol. Each node generates a data packet every 5 min. In order to see how our algorithm performs with different network dynamics, we change the threshold of switching parent: a node switches its parent only when the performance improvement of the candidate is larger than the current parent by this threshold. A large threshold indicates a low network dynamics while a small threshold indicates a
high network dynamics.

Fig. 10 and Fig. 11 show the network performance of our algorithms with different α values in low dynamic network and high dynamic network. We find that our algorithm is effective in improving the network performance of a sensor network: our algorithm with the most appropriate α value improves the PDR performance by $20\% \sim 35\%$ in average, reduces the transmission delay by $30\% \sim 50\%$ in average, and reduces the radio duty cycle by 25% in average.

We observe that (1) a high α value achieves a better performance in terms of PDR and delay in the low dynamic networks. This is because in low dynamic networks, removing many poor links is safe as the possibilities for these poor links to become good links is low. dCut with a high α value will result in fewer loops, limiting the negative impact of routing loops. (2) a low α value achieves better performance in high dynamic network. This is because in high dynamic networks, it is possible that poor links become good links. Therefore, removing too many poor links may not be beneficial. dCut with a low α value will preserve large routing diversities which are required for high dynamic networks.

IX. Conclusion

In this paper, we introduce FlexCut, a flexible approach for cutting off wireless links, which essentially limits the candidate forwarder set of each node. Unlike existing SDN solutions, FlexCut introduces flexible control over existing distributed and dynamic routing protocols. FlexCut can trade arbitrary amounts of routing dynamics for better network performance by exposing to network operators a parameter which quantifying the aggressiveness. We model the network as a directed graph with link weights. Each node in the graph points to its candidate forwarder set. The goal of FlexCut is to cut off user-defined number of links so that loops can be alleviated while routing flexibility can be preserved to the largest extent. We propose novel algorithms, both centralized and distributed, for addressing these problems.

There are multiple future research directions. First, we would like to automate the selection of the α value for different network topologies. Second, we would like to apply FlexCut to more Layer 3 network protocols to evaluate to what extent FlexCut can benefit these protocols. For example, in opportunistic routing protocols [13], each node also has a forwarder set. Any node in the forwarder set can forward the packet when it opportunistically receives the packet. FlexCut can naturally be applied in opportunistic routing protocols so that the forwarder set can be optimized to avoid potential loops.

REFERENCES