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Abstract—Most sensor networks employ dynamic routing
protocols so that the routing topology can be dynamically
optimized with environmental changes. The routing behaviors
can be quite complex with increasing network scale and
environmental dynamics. Knowledge on the routing path of each
packet is certainly a great help in understanding the complex
routing behaviors, allowing effective performance diagnosis and
efficient network management. We propose PAT, a universal
sensornet path tracing approach. PAT includes an intelligent path
encoding scheme that allows efficient decoding at the PC side.
To make PAT more scalable, we propose techniques to accurately
estimate the degree information by exploiting timing information,
allowing more compact path encoding. Moreover, we employ
subpath concatenation to infer excessively long paths with a high
recovery probability. We carefully evaluate PAT’s performance
using testbed experiments and and extensive simulations with up
to 4,000 nodes. Results show that PAT significantly outperforms
existing approaches.

I. INTRODUCTION

As an emerging technology that bridges cyber systems
and the physical world, wireless sensor networks (WSNs)
are envisioned to support numerous applications such as
military surveillance, environmental monitoring, infrastructure
protection, etc [1, 2]. In these networks, large numbers of
tiny, low-power wireless sensing devices are self-organized,
collecting the sensing data to a central sink in a multihop
manner.

Most sensor networks employ dynamic routing protocols
so that the routing topology can be dynamically optimized
with environmental changes. The TinyOS CTP protocol [3]
is an instance of dynamic routing protocol with which each
node regularly estimates the expected number of transmissions
(ETX) [4] to the sink and dynamically selects the next-hop
forwarder with a minimum ETX along the path. Due to
the dynamic routing scheme, a node could forward different
packets to different next hops, although these packets have the
same destination, i.e., the sink node.

The routing behaviors can be quite complex with increasing
network scale and environmental dynamics: packets from a
distant sensor node may follow numerous routing paths to the
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sink. Knowledge on the routing path of each packet is very
useful in the following ways.
• It is important for understanding the dynamic routing

topology, revealing the complex routing behaviors. Such
a knowledge is essential for topology control, routing
improvement, and load balance, enabling effective man-
agement and optimized operations for deployed WSNs
consisting of a large number of unattended wireless sensor
nodes [5].

• It is essential for deriving important system metrics, e.g.,
per-link loss ratio and per-link delays. Most existing
works on link loss and delay monitoring [5–9] assume
that the routing topology is given a priori. Most of
them are restricted to static routing tree estimation,
which is unrealistic and problematic in real-world WSN
deployments where routing topology is time-varying due to
wireless channel dynamics such as fading and interference
[5]. The investigation into realistic and dynamic routing
topology can significantly improve the values of the works
on WSN loss/delay tomography.

• It is very useful for effective network diagnosis and analy-
sis. Most existing works heavily rely on the obtained net-
work topology for inference, allowing further performance
diagnosis and analysis [10–13]. For example, PAD [10]
relies on dynamic network topology for maintaining the
inference model which encodes the internal dependencies
among different network elements, for online diagnosis of
an operational sensor network system. MAP [11] also relies
on the dynamic network topology for defining the impact
scope of a network event, allowing accurate measurement
on the root causes of packet losses. Clearly, obtaining
the accurate per-packet path in a lightweight manner will
greatly improve the accuracy of the measurement and
diagnosis results.

Attaching each packet with the routing path hop-by-hop is
not an attractive approach due to the large message overhead
for packets with long routing paths (perhaps with routing
loops). It is hence desirable to instrument a small message
overhead to each packet, and reconstruct the routing path at
the sink with a high recovery ratio.

We expect that a good path tracing approach should ideally
meet the following two requirements.
• Universal: Since a sensor network can be usually classified

into periodic monitoring (where all nodes generate data
packets, e.g., environmental monitoring), event-triggered
(where only a few nodes generate data packets, e.g.,



tracking), and observer-initiated (where only the requested
nodes generate data packets, e.g., user query) according to
[14], a good path tracing approach should well support all
these networks for different applications.
• Scalable: A good path tracing approach should have a high

path recovery ratio (the fraction of packets with correctly
recovered paths) for large-scale networks. Otherwise, a
simple approach of attaching the node IDs would not incur
too much overhead.

Over the recent years, path tracing (or path reconstruction)
attracted much research attention and many efficient approach-
es have been proposed for sensor networks [15–18]. However,
to the best of our knowledge, no approaches simultaneously
satisfy the above requirements.

MNT [15] is neither universal nor scalable: it assumes
a periodic monitoring sensor network and all nodes in the
network periodically transmit data packets to the sink node;
it is also very sensitive to packet losses and routing dynamics,
impairing its scalability in large-scale networks. PathZip [16] is
universal, but it is not scalable since the time complexity of its
path recovery algorithm grows exponentially with increasing
path length. Pathfinder [17] is scalable to networks upto 900
nodes [17], but it is not universal since it assumes a periodic
monitoring sensor network.

The main contribution of this paper is a sensornet path
tracing approach that satisfy both the above requirements.
We present a novel path tracing approach called PAT (PAth
Tracing) which includes several versions with increasing
recovery capability. The basic version (bPAT) attaches to
each data packet a field called pathvalue which is updated
hop-by-hop and encodes path information towards the sink.
When a packet is received at the sink, the attached pathvalue
can be efficiently decoded to recover the routing path. The
pathvalue, however, can overflow (e.g., when the routing
path is excessively long), impairing PAT’s effectiveness. This
problem is addressed from two perspectives. The dynamic
version (tPAT) accurately estimates each node’s in-degree
(which is time-varying) by exploiting timing information,
allowing more compact path encoding. The extended versions
(xbPAT and xtPAT) try to infer a long path by concatenating
two short subpaths. The key insight of PAT for inferring such
a path (e.g., A to S) is to let an intermediate node on the long
path (e.g., B) generate a local packet towards the sink. It is
highly probable that the two local packets will follow the same
path towards the sink since the routing topology keeps stable
during a short period in most cases. PAT can thus obtain the
long path by concatenating two short subpaths (i.e., A to B
and B to S).

PAT is universal (i.e., can better support periodic monitor-
ing, event-triggered, and obverver-initiated sensor networks)
since it relies on compact encoding and decoding for path
reconstruction, unlike MNT and Pathfinder which exploit inter-
packet correlation and heavily depend on the existence of
locally generated packets at the forwarder nodes. PAT scales
to larger networks than previous approaches since it adopts
subpath concatenation for long path inference when pathvalue
overflows.

The rest of this paper is structured as follows. Section II
describes the related work. Section III presents the design of
our approach. Section IV shows the evaluation results, and
finally, Section V concludes this paper.

II. RELATED WORK

Sensornet path tracing attracts significant research attention-
s. PAD [10] adds to each packet a two-byte field which is used
to store one forwarder along the path. For an h hop path, PAD
needs h packets to assemble the entire path. Although PAD
is lightweight, it cannot accurately assemble the routing path
with high routing dynamics.

PathZip [16] adds a fix-cost hash value to each packet, con-
taining compressed path information. In order to reconstruct
the routing path for each packet, (1) the set of neighboring
nodes for each node must be known a priori; (2) the PC
side algorithm performs exhaustive search over neighbors for
all nodes along the path for a match with the hash value in
the packet. The computational overhead grows exponentially
with increasing path length. In other words, given a limited
computation time for each packet, the recovery ratio of per-
packet path will be low for large-scale networks. Compared
with PathZip, PAT employs an efficient encoding scheme that
allows fast decoding at the sink. PAT additionally employs
subpath concatenation, making it much more scalable than
PathZip.

MNT [15] exploits information in the packet header (e.g.,
the first-hop forwarder or parent for short) to reconstruct
the routing path with the assumption that all nodes in the
network generate local traffic. The key insight of MNT is
to utilize the parent information in packets originated from
a given node to infer routing paths of packets passing the
node. MNT essentially exploits inter-packet correlation for
path recovery, i.e., a forwarded packet and its adjacent packets
locally generated at the forwarder are transmitted to the same
next hop. MNT has a low message overhead. However, the
recovery ratio degrades in large-scale networks with decreasing
packet delivery ratio and increasing routing dynamics (i.e.,
frequent parent changes). MNT requires all network nodes
to periodically generate local packets, hence is not suitable for
event-triggered or observer-initiated networks. Different from
MNT, PAT exploits efficient and compact path encoding and
decoding, instead of inter-packet correlation. Therefore, PAT
does not require periodic traffic from all network nodes.

Pathfinder [17] is a robust path reconstruction method.
At the node side, Pathfinder exploits temporal correlation
between a set of packet paths and efficiently compresses
the path information using path difference. At the PC side,
Pathfinder infers packet paths from the compressed information
and employs intelligent path speculation to reconstruct the
packet paths with high reconstruction ratio. Similar to MNT,
Pathfinder also exploits inter-packet correlation. Different
from MNT, Pathfinder tolerates certain degree of differences
in inter-packet correlation by explicitly recording the path
difference. PAT differs from Pathfinder in two important
ways. First, PAT is universal while Pathfinder is only suitable
for periodic monitoring sensor networks since Pathfinder
requires all nodes to periodically generate local packets.
Second, PAT performs better than Pathfinder in large networks
with high routing dynamics. In such networks, the path
difference between two packets is inherently large, exceeding
the tolerance capacity in Pathfinder.

CSPR [18] employs a compressive sensing based approach
for path reconstruction in sensor networks. CSPR first classifies
packets into different groups with each group containing the
packets traveling the same path. It then decodes the path using
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Fig. 1: PAT’s basic idea. The pathvalue is initialized to 0 at
the original node. It is then updated using multiplication
and addition according to the rule associated with each
in-edge.

compressive sensing when a sufficient number of packets in the
group are accumulated. CSPR’s classification accuracy highly
depends on the size of the bloom filter for path recovery.
For successful recovery, CSPR requires a sufficient number of
packets in each group, i.e., ck log(N/k), where c= 1.5, N is the
total network size, and k is the path length [18]. This number
can be quite large for large-scale networks, which means that
the path cannot be recovered if it is less frequently taken. PAT
does not suffer from the above problem, and performs much
better than CSPR, especially in large-scale network with long
routing paths.

III. DESIGN

We assume a sensor network where some nodes generate
local packets to a central sink. We would like to trace the
routing paths of those data packets with a small and bounded
message overhead.

PAT contains a series of versions with increasing recovery
capability at the cost of slightly increasing message overhead.
We will describe different versions in the following subsec-
tions.

A. bPAT: the basic version
Figure 1 shows the basic idea of PAT. With PAT, data packets

are instrumented with a field called pathvalue which is updated
at each forwarder along the routing path towards the sink. Each
forwarder updates the pathvalue according to its in-edges. If
there are n in-edges and packets are coming from the i-th edge
(1 ≤ i ≤ n), the pathvalue is updated to: pathvalue× n+ i. In
Fig. 1, we annotate each edge with an update rule “×n+ i”.

For example, we consider routing paths from node D. The
pathvalue is initialized as 0 at D. If the routing path is DAS,
the pathvalue is updated as 1 at A, and is updated as 4 at the
sink S. If the routing path is DBS, the pathvalue is updated as
1 at B, and is updated as 5 at S.

The update rules can not only work for acyclic paths as
illustrated above, but also work for cyclic paths. Consider the
routing paths from node F. If the routing path is FCS, the
pathvalue is updated as 2 at C, and is updated as 9 at S. If the
routing path is FCFCS, the pathvalue is updated subsequently
as 2 (at C), 3 (at F), 8 (at C), and finally 27 at S. We see that
the different pathvalues can differentiate different paths in this
example.

In general, we can formally prove the following theorem.
Theorem 1: PAT ensures a unique pathvalue for each

routing path.

Algorithm 1 Algorithm for decoding a pathvalue
1: procedure DECODE(sink, pathvalue)
2: P=(sink)
3: k=sink
4: while pathvalue > 0 do
5: i=(pathvalue-1) % n(k) + 1
6: k=f(i)
7: P=P ++ k // ++ means concatenation
8: pathvalue = (pathvalue-i) / n(k)
9: return reverse P

Proof: We consider two different paths p and p′:

p : nk→ ...→ ni+1→ ni→ ...→ n0 = S
p′ : n′j→ ...→ n′i+1→ ni→ ...→ n0 = S

(1)

The two paths share a common sub-path starting from ni
(i≥ 0). The previous hop nodes of ni are different for the two
paths. There are two cases: (a) Either k = i or j = i (but not
both since in this case two paths are the same) (b) k ≥ i+1,
j ≥ i+1, and ni+1 6= n′i+1. We will prove that for both cases,
the pathvalues at ni are different, i.e., vi 6= v′i.

(a) Without loss of generality, we assume k = i. In this case,
vi = 0 since the packet originates from ni. On the other hand,
v′i > 0 since the pathvalue is updated at least once. Therefore,
vi 6= v′i.

(b) We show that vi 6= v′i by contradiction. Assume the
number of inedges for ni is n. ni+1 → ni is the m-th edge
while n′i+1→ ni is the m’-th edge (1 ≤ m,m′ ≤ n). If vi = v′i,
vi− 1 ≡ v′i− 1 (mod n). According to the update rules, vi =
vi+1×n+m and v′i = v′i+1×n+m′ (1≤m,m′ ≤ n). Therefore,
vi− 1 ≡ m− 1 (mod n) and v′i− 1 ≡ m′− 1 (mod n). We can
get m−1≡m′−1 (mod n). Since 1≤m,m′ ≤ n, it must be the
case that m = m′ which contradicts with the fact that m 6= m′.

Starting from ni, p and p’ have the same sequence of nodes.
Therefore, the pathvalues are updated according to the same set
of update rules. We will prove that v0 6= v′0 given that vi 6= v′i.

1) vi 6= v′i is already proved.
2) We will show that vi−1 6= v′i−1. Suppose the update rule

from ni to ni−1 is “xh+l”. vi−1 = h× vi + l and v′i−1 =
h× v′i + l. Therefore, vi−1− v′i−1 = h× (vi− v′i) 6= 0, i.e.,
vi−1 6= v′i−1.

3) From 1 and 2, v0 6= v′0.
Hence, the theorem holds.
The decoding process at the PC side needs two kinds of

information: 1) The number of in-edges of each node (i.e.,
in-degree). We use n(k) to denote the in-degree of node k. 2)
For each node, there exists a one-to-one mapping between the
i-th in-edge and the corresponding incoming node ID. We use
f (i) to denote the node ID corresponding to the i-th edge and
f−1(k) to denote the index of the in-edge corresponding to
node k.

Algorithm 1 shows the decoding algorithm. We will use an
example to show the working details of the algorithm. Suppose
at the sink node, we get a pathvalue of 27. The path P is
initialized to (S).
• k=S. We would like to determine which node forwards the

packet to the current node k=S. The index is calculated
as (27-1) % 3 + 1 = 3 which corresponds to node C.
Therefore, k=C, P=(S,C), and pathvalue= (27-3)/3=8.

• k=C. Again we would like to determine C’s previous hop.
The index is calculated as (8-1) % 2 + 1 = 2 which
corresponds to node F. Therefore, k=F, P=(S,C,F), and



pathvalue=(8-2)/2=3.
• k=F. The index is (3-1) % 1 + 1 = 1 which corresponds to

node C. Therefore, k=C, P=(S,C,F,C), and pathvalue=(3-
1)/1=2.
• k=C. The index is (2-1) % 2 + 1 = 2 which corresponds to

node F. Therefore, k=F, P=(S,C,F,C,F), and pathvalue=(2-
2)/2=0.
• The while loop terminates since pathvalue is no longer

larger than 0, and the decoded path is obtained by reversing
P. The resulting path is hence FCFCS.

The encoding and decoding scheme of PAT has some nice
properties: 1) The update rules can be locally determined by a
node. 2) A pathvalue can uniquely determine a routing path. In
contrast to PathZip which uses exhaustive search in the entire
space of possible routing paths, PAT has an efficient decoding
algorithm (constant overhead per hop), enabling fast packet
path tracing.

There are, however, two challenging issues concerning
PAT’s scalability. First, how to estimate the degree and index
information and how it can be reliably collected at the sink?
Second, how to handle the case when the pathvalue overflows?
bPAT addresses these two issues in simple ways.

First, node k can locally obtain its degree information. A
network usually employs broadcasting for routing initialization
and maintenance. Each node k can find all its direct neighbors
that k can hear. The i-th found neighbor is assigned with index
i. Each node can locally obtain the above information and
transfer the information to the central sink after the network
initialization phase. There are chances that the message drops
along the path towards the sink. We employ NAK mechanism
at the sink: if the sink does not receive the information from
a node, it will transmit an NAK to the node, using the reverse
path which can be setup in all nodes along the collection path
when a packet is sent from the node to the sink. Therefore,
the node can be informed to retransmit the information again
till the sink receives the information.

Second, bPAT uses the most significant bit in pathvalue to
record whether the pathvalue overflows. bPAT cannot recover
path of a data packet with an overflown pathvalue. In the
initialization phase, pathvalues are intentionally marked as
overflown.

There are indeed more intelligent ways to tackle these
two problems at the cost of slightly increasing (but still
small and bounded) overhead. Section III-B introduces tPAT
which exploits packet timing information to get a more
accurate estimate of node in-degrees. Section III-C introduces
xPAT (including xbPAT and xtPAT) which uses subpath
concatenation for inferring excessively long path.

B. tPAT: the dynamic version exploiting timing information
As mentioned in the previous subsection, we need two kinds

of information for each node k: (1) n(k): node k’s in-degree.
(2) f (i): a mapping from the index of the in-edge to the
corresponding node ID.

In bPAT, each node k estimates n(k) as the number of all
its direct neighbors that k can hear. It is not accurate since it
considers all direct neighbors that k can hear, some of which
never forward packets to k. For example, in Fig. 1, node B’s
direct neighbors include all other nodes shown in the figure.
However, only nodes D and E forward packets to B. If B takes
into account in all neighbors, the number of in-edges of B will

be 6 while the actual number of in-edges is 2. Overestimating
the in-degree of a node will waste the encoding space, causing
the pathvalue to overflow more easily.

Instead of relying on control-plane broadcasting packets to
find all incoming neighbors, tPAT exploits data-plane packets:
each time a node receives a data packet from a new direct
neighbor, it adds the new neighbor into its neighbor table.
In-degree estimation based on data-plane packets can avoid
the overestimation issue, resulting in more efficient use of the
encoding space.

A further issue is that the convergence time can be long
since there is no explicit initialization phase to explore all
possible in-edges in existing collection protocols (e.g., CTP).
To address this issue, tPAT encodes path information based
on the current status of the node, and further exploits timing
information to recover as many as possible packet paths during
the convergence time.

When a data packet is received, a node updates the pathvalue
of the forwarded packet using the current neighbor table size
and the neighbor’s index. The degree and index information
at each node is hence time-varying. In order to estimate
the time-varying information at the sink side, tPAT needs
timing information of data packets’ arrivals as well as timing
information of how the neighbor table evolves at each node.

tPAT needs to record the following additional information:
• For each data packet d, the arrival time at the sink ts(d)

is measured on a reference clock and known for any
packet d. We assume an estimate of the packet generation
t̂g(d) is accessible for all packets. For example, we can
attach an additional field in the data packet, recording
the network sojourn time of the packet s(d). The packet
generation time can thus be estimated as ts(d)− s(d). The
error of this estimate is bounded by t̂g(d)−∆l(d)≤ t̂g(d)≤
t̂g(d) + ∆u(d). Here ∆l(d),∆u(d) denote the upper and
lower bounds on the error of the time-stamping mechanism
used. They are not transmitted as part of a packet d, but
assumed to be derived from an analysis, e.g., [19].

• When a neighbor is added, the node generates an update
message c = 〈origin, node, index, t̂g(c)〉, where origin
denotes the node generating the update message, node
denotes the added neighbor, index denotes the index of
the added neighbor, and t̂g(c) is the estimate of the time
when the neighbor is added. Similar to data packets,
we assume the estimation error of t̂g(c) is bounded by
t̂g(c)−∆l(c)≤ t̂g(c)≤ t̂g(c)+∆u(c).

There are some important points worth mentioning here.
First, we note that the update message is only generated when
a data packet from a new neighbor is received. If a node
repeatedly receives data packets from a given neighbor already
in the neighbor table, no update message will be generated
except for the first one. Second, the update message does not
need to be immediately transferred to sink. As long as the
update message can eventually be received with timestamp
t̂g(c), we can infer the node status for a given time. Third,
the update message format can be further extended to handle
neighbor deletions, e.g., when a node fails in a network.
Hence, tPAT is more suitable for dynamic networks with node
additions and deletions. Finally, the transmissions of update
messages can be aggregated to reduce transmission overhead.
However, we separately consider each update message for the
clarity of presentation.
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Fig. 2: Method for inferring time-varying degree and index
information at a node k.

Figure 2 illustrates how our method can infer the time-
varying degree and index information. The figure shows the
packet generation and reception activities at a node, say k.
The x-axis denotes the time with respect to sink. Node k
generates two update messages cx, cy (where the subscripts
denote the sequence numbers starting from 1) with the t̂g(c)
values indicated. During the two update messages, node k also
receives a data packet d. Although we do not know the exact
time when packet d arrived at node k (except that k is the
sink), we do know that the arrival time is bounded between
the packet’s generation time at the original node (tg(d)) and
its arrival time at the sink (ts(d)). There are two cases where
we can determine the degree and index information applied to
packet d.
• cx is the last update message from k (i.e., node k never

issues cy) and tg(cx) < tg(d). Considering that we only
know the estimated times, a further sufficient condition is:
t̂g(cx)+∆u(cx)< t̂g(d)−∆l(d).
• There exists cy : y = x + 1 and tg(cx) < tg(d) < ts(d) <

tg(cy). Considering that we only know the estimated
generation times, a further sufficient condition is: t̂g(cx)+
∆u(cx)< t̂g(d)−∆l(d) and ts(d)< t̂g(cy)−∆l(cy).

In both cases, we can guarantee that the degree and index
information applied to packet d at node k can be inferred
accurately by considering c1 to cx. We say that the packet
d’s path can be decoded at node k. If packet d’s path can
be decoded at all nodes involved in the decoding process, d’s
entire routing path can be decoded.

Suppose a data packet’s path is currently decoded at node
k (it has been decoded backward from the sink), we need
to determine the degree and index information at k that has
applied to d’s pathvalue in order to determine k’s previous hop.
As discussed above, if either of the two conditions holds, we
can determine the corresponding n(k) and f (i) by assembling
c1 to cx.

If c1 to cx are all correctly received at the sink, n(k) =
cx.index and f (i) : f (c j.index) = c j.node,1≤ j ≤ x.

However, if there are losses, there might be ambiguities in
determining n(k) and f (i). Our approach to addressing this
problem is to employ a reliable transfer mechanism. Basically
speaking, tPAT employs an NAK mechanism like bPAT: the
sink will transmit a NAK if losses are detected, informing the
node to retransmit the information again till the sink receives
the information.

C. xbPAT and xtPAT: the extended versions employing subpath
concatenation

So far, we have only considered the case when the
pathvalue never overflows. Both bPAT and tPAT cannot decode
overflown pathvalue. Indeed, for long path with high in-degree
forwarders, it is possible that the pathvalue overflows, causing
decoding failures at the sink.

We can extend the pathvalue field to accommodate complete
information about the path. However, the pathvalue field might
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Fig. 3: The idea of subpath concatenation.

be very long for some packets. It is favorable to devise an
approach with small and bounded overhead, and it can also
recover very long path with a high probability.

Figure 3 illustrates cases in which the pathvalue from A
to S will overflow. The basic idea of our approach is to let
an intermediate node on the path, e.g., B, generate a local
packet. If path from A to B’s previous hop can be recovered
and path B to S can be recovered, path A to S can also be
recovered by concatenating the two paths if packets from A and
B follow the same path to the sink. Note that we do not require
that path B to S is directly recovered via pathvalue, it can
also be recovered using another intermediate node. Figure 3(a)
illustrates the case in which B to S can be directly decoded.
Figure 3(b) illustrates the case in which the recovery of B to
S depends on another intermediate node, C. Hence the above
recovering process can be performed in an iterative manner,
resulting in excellent scalability.

In order to realize the above idea, three key issues need to
be addressed.

(1) Which intermediate node is the helper node for
generating a local packet?

When a data packet is forwarded in the network, PAT
updates the pathvalue hop-by-hop. If the pathvalue never
overflows, no helper node is needed. Otherwise, the first node
that experiences overflow is identified as the helper node for
generating a local packet.

(2) How to recover the path from origin to the previous hop
of the helper node?

The helper node performs the following tasks on the data
packet from origin: (a) keeps the non-overflown pathvalue
unchanged (i.e., do not update pathvalue). (b) records an
additional field called anchor which is the previous hop of
the helper node for the forwarded data packet. Using these
two fields, the path from origin to anchor can be recovered by
performing decoding starting from anchor. For example, we
can invoke DECODE (shown in Algorithm 1) with anchor and
pathvalue as parameters to recover the partial path from origin
to anchor.

(3) How to verify that packet from the helper node follows
the same path as the original node towards the sink?

The helper node will attach to the data packet from origin
a crc field which will be used to record the CRC value of
the subpath from the helper node to the sink. It will be used
to verify that the local packet from the helper node follows
the same path. Consider A is the origin node. Let Path(A..S)
denote the path of packet from A, and Path(helper..S) denote
the path of packet from the helper. We consider Path(A..S) =
Path(A..anchor) ++ Path(helper..sink) if the recorded crc field
in A’s packet equals to CRC(Path(helper..sink))—the calcuated
CRC value of the known path. Note that Path(helper..sink) can
be recovered either directly or indirectly relying on another
helper node.

Algorithm 2 shows the algorithm for recovering a pathvalue
which will overflow with subpath concatenation. We will use



Algorithm 2 Inferring path with overflown pathvalue
1: procedure INFER(pathvalue, anchor, crc)
2: P1=DECODE(anchor, pathvalue)
3: for pkt in time window do
4: if pkt non-overflow then
5: P2=DECODE(sink, pkt.pathvalue)
6: else
7: P2=INFER(pkt.pathvalue, pkt.anchor, pkt.crc)
8: if crc == CRC(P2) then
9: return P1++P2 // ++ means concatenation

10: // cannot recover the full path

the example shown in this section to show its working details.
In Figure 3(a), A generates a data packet. The pathvalue in

A’s packet will be updated hop-by-hop towards the sink. An
intermediate node on the path, B, detects that the pathvalue will
overflow if it is further updated at B. B keeps the pathvalue
unchanged, and at the same time, attaches two fields to A’s
packet: the anchor field records B’s previous hop while the
crc field will be the CRC value of the subpath starting from
B to S. With the anchor field and the non-overflown pathvalue
field, PAT can recover the subpath from A to B’s previous
hop. B will also generate a local packet towards the sink. It is
assumed that if the transmission times of the two packets (from
A and from B) are close, B’s packet will follow the same path
as A’s packet with a high probability. The path from B to S
can be directly recovered since B’s packet does not experience
overflow in pathvalue. PAT verifies if the recorded crc in A’s
packet equals to the calculated CRC values of the known path
from B to S. If it is the same, PAT considers the path from A
to S is the concatenation of the path from A to anchor (i.e.,
B’s previous hop) and the path from B to S.

Figure 3(b) shows a more complicated case in which the
path from B to S cannot be directly recovered. In this case,
the local packet from B will trigger another helper node, C, to
generate a local packet. The path from B to S can be recovered
in a process similar to the one we have described above. If
the path from B to S is recovered, the path from A to S can
be recovered if the recorded crc in A’ packet equals to the
calculated CRC value of the known path from B to S.

We note here a few important features of the extended
versions: 1) Two fields (anchor and crc) are attached to
the data packet when the pathvalue will overflow without
subpath concatenation. It also requires the helper nodes to
generate local packets. However, the attached overhead to
each data packet is still small and bounded. 2) The use of
subpath concatenation achieves a much stronger path recovery
capability. First, it can recover long path recursively. Second,
even if the full path cannot be recovered (e.g., the crc values
do not match), it can at least recover a partial path from origin
to anchor.

IV. EVALUATION

In this section, we evaluate the performance of PAT with
state-of-the-art approaches. Section IV-A shows the evaluation
results based on a 80-node indoor testbed. In order to see
the performance of PAT with various network parameters, we
perform TOSSIM simulations in Section IV-B. Since TOSSIM
does not run efficiently for a large scale network exceeding
1,000 nodes, we perform a simulation study based on our own
simulator in Section IV-C. By using this simulator, we evaluate
the performance of various approaches in networks with up to
4,000 nodes.
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Fig. 4: Recovery ratios of the testbed experiments.

A. Testbed experiment
We implement PAT on TelosB nodes and use a 80-node

testbed to validate its design. In order to see the impact
of different network densities, we configure the transmission
power level of each node to be 1, 2, 3 which correspond to
−32.5dBm, −28.7 dBm, and −25 dBm, respectively.

Each node employs the CTP protocol [3] to transmit data
packets to the sink node with a period of 1 min. The payload
length of the data packet fixed at 70 bytes. We obtain the
ground truth by analyzing the logs collected from each node’s
external flash.

We conduct two sets of experiments. The first set of
experiments are used to evaluate the performance of different
approaches for tracing paths from all nodes, i.e., all nodes
generate local data packets. The second set of experiments
are used to evaluate the performance of different approaches
for tracing only 20% nodes, i.e., only 20% nodes generate
local data packets. We note that both MNT and Pathfinder are
not suitable for event-triggered or observer-initiated networks
where only a small number of nodes generate local data
packets. In order to let MNT and Pathfinder work, all nodes
must explicitly generate packets periodically. The control
information is piggybacked in locally generated packets
whenever possible. If there are no locally generated data
packets, separate control packets are transferred to the sink
node. Each experiment lasts for one hour.

Recovery ratios of testbed experiments. Figure 4(a) shows
the recovery ratio for tracing all nodes with power levels 1,
2, and 3. and Figure 4(b) shows the recovery ratio for tracing
20% nodes with power levels 1, 2, and 3. We can see that the
recovery ratios for all approaches (MNT, PathZip, Pathfinder,
xbPAT and xtPAT) are high since network scale of the testbed
is relatively small.

Overhead. Existing path tracing approaches may introduce
two kinds of overhead: data-plane overhead which is the
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Fig. 5: Relative overhead of the testbed experiments.

overhead added to each data packet. control-plane overhead
which is the overhead carried in separate control packets, e.g.,
update and helper packets in xtPAT.

Analysis of data-plane overhead. We assume each packet
already includes the CTP header (including origin, sequence
number, hop count). We assume two bytes are used to represent
a node ID. The message overhead of MNT is six bytes,
including the parent ID, and the 4-byte timestamp. PathZip
has an overhead of 8-byte MD5-like hash value. Pathfinder
has a variable overhead with a maximum overhead of 9 bytes
including parent node ID (2 bytes), XOR-byte (1 byte), bit
vector (≤2 bytes) and container (≤4 bytes).

For PAT, the pathvalue field is 4 bytes, the anchor field
is 2 bytes, and the crc field is 2 bytes. PAT’s basic version,
bPAT, requires the smallest message overhead, i.e., 4 bytes
of pathvalue. The full-fledged version, xtPAT, requires the
largest message overhead. For data packets without overflow,
the overhead is 8 bytes, including 4 bytes of pathvalue and
4 bytes of timestamp. It is also mentioning that the 4-byte
timestamp is useful for accurate delay measurement [20].

Relative overhead of testbed experiments. We define the
relative overhead as the percentage of the generated data-plane
overhead and control-plane overhead over all generated packet
overhead (including useful data payload). Figure 5(a) shows
the relative overhead for tracing all nodes. We can see that (1)
The overhead of PAT is comparable to existing approaches,
e.g., Pathfinder. (2) In dense networks (e.g., power levels 2
and 3), the control-plane overhead of xbPAT is much larger
since each node regards many nodes as its neighbors. (3) The
data-plane overhead of xtPAT is much larger than xbPAT as
xtPAT additionally attaches a 4-byte timestamp field. However,
xtPAT’s control-plane overhead is much smaller than xbPAT
since each node only reports possible child nodes (i.e., previous
hop nodes) to the sink node.

Figure 5(b) shows the relative overhead for tracing 20%
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nodes. In this scenario, MNT and Pathfinder still require
all nodes to transfer control packets (without useful data
payload). Otherwise, they cannot decode the packet paths.
Therefore, the relative overheads of MNT and Pathfinder are
high. PathZip and PAT have much smaller relative overheads.
xtPAT’s relative overhead is the smallest since it generates the
smallest control-plane overhead.

B. TOSSIM simulations
In this section, we use the TOSSIM simulator [21] to study

the performance of various approaches with varying network
parameters. TOSSIM is a high-fidelity simulator which can
reuse the TinyOS code.

In the simulation, each node employs the CTP protocol
to send data packets to a central sink. Different approaches
attach different fields to data packets in order to perform
path recovery at the PC side. The ground truth is obtained
by inspecting the dbg() output from each node. We use the
LinkLayerModel utility in the TinyOS distribution to generate
different network configurations.

Recovery ratios. We compare performance of four existing
approaches using these four network configurations with 100,
225, 400, and 625 nodes, from the simplest to the most
complex. The number of nodes increases from 100 to 625.
The average hop count increases from 3.4 to 11.9. The average
node degree increases from 3.5 to 9.8. The average stable
period length decreases from 37.6 to 1.5. The average link
PRR decreases from 99.8% to 94.0%.

Figure 6 shows the recovery ratios of four approaches. We
can see that for the first two simple cases, all approaches
perform well. However, for the last two complex cases, xtPAT
performs significantly better than the others. For simulation
trace C with 400 nodes, xtPAT can recover 95.44% packet
paths, and, for simulation trace D with 625 nodes, xtPAT can
recover 73.35% full packet paths, with 36.37% decoded in
the first phase (xtPAT-1) and 36.98% inferred in the second
phase (xtPAT-2). In addition, 11.35% packets have partial paths
recovered (xtPAT-3). All approaches have a zero error ratio in
our simulations.

Overhead. Figure 7(a) shows the relative overhead for the
TOSSIM experiments. The simulation consists of 225 nodes
and we configure the simulator to exhibit different network
dynamics (stable period length equals to 1,3,7). We can see
that xtPAT’s control-plane overhead increases in more dynamic
networks (with smaller stable period length). This is because
in more dynamic networks, each node has more child nodes,
resulting in more update messages. For xbPAT, the relative
overhead does not change since it has a separate initialization
phase to discover all neighbors. We also compare different
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Fig. 7: Relative overhead of TOSSIM experiments.
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approaches for tracing a subnet of nodes in a 225-node network
with a stable period length of 3. Figure 7(b) shows the relative
overhead of different approaches for tracing 20%, 50% and
100% nodes. We can observe both MNT and Pathfinder have
high overheads, making them unsuitable for event-triggered
and observer-initiated networks where only a small subnet of
nodes generate local data packets. On the other hand, both
PathZip and PAT incur small overhead.

Figure 8 shows the distribution of xtPAT’s control packets
over time (for tracing all nodes). We can that in more dynamic
networks, the number of control packets is high in the initial
phase. However, it becomes low afterwards. This is reasonable
because with high routing dynamics, xtPAT can find more child
nodes in the initial phase and it quickly converges afterwards.

In order to see PAT’s overhead in networks with node
deletions and additions, we perform an experiment based on
a 225-node network for 4 hours. At the end of each hour,
we delete 10% nodes and add 10% new nodes to the network.
This operation represents regular network maintenance where a
small set of nodes are replaced with new nodes. Figure 9 shows
the number of control packets varied with time. We can see
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Fig. 9: xtPAT’s overhead under node deletions and
additions.

that node deletions/additions introduce extra overhead to xtPAT
since additional update messages are required. This overhead
is relatively small as long as the number of replaced nodes is
small. Moreover, the control overhead quickly decreases when
the network becomes steady again.

C. Large-scale simulations
Since TOSSIM cannot efficiently support a large scale

network exceeding 1000 nodes, we write our own simulator in
C++ to study the performance of PAT in large scale networks.
For comparison, we also implement Pathfinder and CSPR, the
state-of-the-art path tracing approaches.

The data packet payload is fixed at 50 bytes. We vary the
network scale to study its impact to the path recovery ratio
and relative overhead. The stable period length is 3 in the
simulation. The data packet generation period is 1min.

Figure 10(a) shows the recovery ratios for tracing all nodes
with network sizes 1000, 2000, 3000 and 4000. We can see that
xtPAT performs consistently better than Pathfinder and CSPR.
The path concatenation phase plays a more important role in
larger networks, e.g., it recovers 23.3%, 38.3%, 42.8%, 43.2%
of all packet paths for network sizes of 1000, 2000, 3000 and
4000. Figure 10(b) shows the recovery ratios for tracing 20%
nodes. Similarly, we can see that xtPAT performs much better
than Pathfinder and CSPR.

Figure 11(a) shows the relative overhead with network sizes
1000, 2000, 3000 and 4000. xtPAT’s overhead is larger than
Pathfinder and CSPR, and the overhead due to helper packets
increases with larger network scale. However, as Figure 11(b)
shows, the relative overhead is much smaller than Pathfinder
when only 20% nodes are required to be traced since Pathfinder
requires all network nodes to periodically generate control
packets for path reconstruction. CSPR introduces constant
overhead in each packet. Therefore, its relative overhead does
not change in different networks. However, as shown in
Figure 10, the recovery ratio of PAT (above 70%) is much
higher than CSPR (below 10%) in large scale networks.

It is worth noting that Pathfinder requires all network nodes
to generate packets with a common period for achieving high
recovery accuracy. PAT does not have this requirement. In
order to compare the performance of PAT with Pathfinder
when nodes have different inter-packet intervals (IPIs), we
conduct a series of simulations with different levels of IPI
randomness. IPIs are set in a random interval [t − r, t + r]
(seconds) where t = 120s in our simulation and r represents the
randomness. When r = 0, all nodes have the same IPI. Table 1
shows the reconstruction results with varying IPI randomness
controlled by r. When there is no IPI randomness, both PAT
and Pathfinder achieve high reconstruction ratio. When the IPI
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Fig. 10: Recovery ratios in large-scale simulations.
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Table 1: Path reconstruction ratios of Pathfinder and PAT
when there exist IPI randomness.

r Pathfinder PAT
0 second 86.1% 97.5%

20 seconds 83.0% 98.8%
60 seconds 60.2% 99.1%

100 seconds 26.7% 98.3%

randomness increases, the reconstruction ratio of Pathfinder
decreases rapidly. The reason is that in Pathfinder, each path
is reconstructed with the help of a reference packet at each hop.
When nodes have different IPIs, those reference packets cannot

be accurately located, resulting in decreased performance.

V. CONCLUSION

In this paper, we propose PAT, a universal sensornet path
tracing approach. PAT includes an intelligent path encoding
scheme that allows efficient decoding at the PC side. To
make PAT more scalable, we propose techniques to accu-
rately estimate the degree information by exploiting timing
information, allowing more compact path encoding. Moreover,
we employ subpath concatenation to infer excessively long
paths with a high recovery probability. We carefully evaluate
PAT’s performance using testbed experiments and extensive
simulations. Results show that PAT significantly outperforms
existing approaches.
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