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Abstract—Network measurement, which provides detailed
information about the behaviors of operational networks, is
essential for network management in wireless sensor networks.
In the literature, there have been many approaches focusing
on measuring individual aspect of the network, e.g., per-packet
routing path and per-hop delay. However, there lacks a general
support for conducting different measurement tasks. When
managing an operational network, a network operator often
needs to switch the current measurement task to a different one,
in order to diagnose the observed symptoms. In this paper, we
propose TinySDM, a software-defined measurement architecture
for WSNs. TinySDM provides a general support for conducting
different measurement tasks. TinySDM defines a set of carefully
selected hooks that allow the users to easily execute their
own measurement tasks. In addition, TinySDM provides a C-
like language called TinyCode Language (TCL) to enable easy
customization of measurement tasks. By only transmitting the
binary code of the measurement task, TinySDM significantly
reduces the size of the disseminated data compared with existing
reprogramming approaches. We implement TinySDM on the
TinyOS/TelosB platform and evaluate its performance extensively
in a testbed with 60 nodes. We also use TCL to implement
four specific measurement tasks. Results show that TinySDM
is flexible, efficient and easily programmable.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely em-

ployed for enabling various applications such as environment

monitoring [1], ecosystem management [2], and infrastructure

protection [3]. Managing WSNs becomes increasingly difficult

due to the rapid growth of their network scale and system

complexity. Network measurement plays an important role

in the management of WSNs. Many network tasks such

as topology control, routing improvement, load balance and

performance diagnosis [4–7] rely on accurate and timely

measurements of various system metrics, e.g., per-packet

routing path, per-link loss ratio and per-hop delay. For

example, PAD [5] relies on the dynamic routing topology for

online diagnosis of an operational sensor network.
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Previous efforts on WSN measurement [8–11] focused on

each individual aspect of the network, e.g., the routing path

[8], packet loss ratio [11], etc. However, there lacks a general
support for conducting different measurement tasks.

Consider a large scale sensor network consisting of thou-

sands of sensor nodes. Usually, some lightweight measurement

tasks, e.g., PAD [5], are already included in the application

code in order to facilitate the management of such a network.

However, there may exist unexpected symptoms, e.g., large

transmission delays [9], which cannot be well explained by

these lightweight measurement tasks. As a network manager,

you face the practical requirement of easily customizing a

more suitable measurement task, e.g., delay monitoring [9],

and quickly deploying this new measurement task.

Performing this routine task is very difficult. First, it is

difficult to customize a new measurement task. A programmer

often needs to find the right places from a large codebase

before writing customized measurement functions. This re-

quires a deep understanding of the underlying implementation

details. For example, in order to conduct delay measurement

using Domo [9], a programmer needs to perform source-

level modifications in the MAC layer, network layer and

application layer: In the MAC layer, packet timestamps should

be recorded; In the network layer, the transmission delay

should be accumulated and updated before it is piggybacked in

the forwarded data packet; In the application layer, the packet

structure should be modified to accommodate additional

measurement data.

Second, it is costly to deploy a new measurement task.

While wireless reprogramming approaches [12, 13] offer

general approaches for deploying WSNs software, they often

introduce unnecessarily large overhead for deploying a mea-

surement task. For example, wireless reprogramming using

the standard approach in TinyOS, i.e., Deluge [12], requires

transferring the entire program image, introducing a large

dissemination overhead. Recent incremental reprogramming

approaches significantly reduce the dissemination cost [13].

However, they usually require a hardware reboot, incurring

a large network initialization overhead for recovering the

network status.

To address these challenges, we propose TinySDM, a

software-defined measurement architecture for WSNs. TinyS-



DM provides a general support for conducting different
measurement task.

First, it allows easy customization of different measure-
ment tasks. TinySDM defines a set of carefully selected hooks

that allow users to easily execute their own measurement

tasks. In addition, TinySDM allows users to easily add

global variables for the measurement task. To facilitate

programming, TinySDM provides a C-like language called

TinyCode Language (TCL) which is expressive enough for

implementing a variety of measurement tasks. TCL provides a

good separation of the measurement logic and remaining code

(including the OS, protocol, and application) so that users can

focus on the measurement task at hand.

Second, it allows fast and efficient deployment of a
new measurement task. The measurement tasks expressed

in TCL are compiled into separate binary modules which

can be dynamically loaded on the sensor nodes. To deploy

a new measurement task, it only needs to disseminate the

binary code relevant to the measurement task. Compared with

traditional reprogramming approaches, the dissemination of

a measurement task in TinySDM requires much less trans-

mission overhead, which is important for energy-constrained

WSNs [14–16]. Moreover, TinySDM does not require a

hardware reboot to execute or stop a new measurement task,

incurring no initialization overhead for collecting network

status. In addition, high level interfaces for adding or deleting

a measurement task at runtime are also provided in TinySDM.

We implement TinySDM on the TinyOS 2.1.2/TelosB

platform. We use TinySDM to implement four existing

measurement tasks to demonstrate that its expressiveness

allows easy customization of different measurement tasks.

We also carefully evaluate its implementation overhead.

Results show that TinySDM introduces small CPU and

memory overhead. More importantly, TinySDM significantly

reduces the size of the disseminated data for deploying

new measurement tasks compared with using reprogramming

protocols to update measurement tasks.

The contributions of this paper are summarized as follows:

• Software-defined measurement architecture for
WSNs. To the best of our knowledge, we are the first

to propose a software-defined measurement architecture

which provides a general support for conducting different

measurement tasks.

• Expressive language design. We design a C-like lan-

guage called TCL. Four case studies demonstrate its

expressiveness for easily customizing different measure-

ment tasks.

• Efficient implementation. We describe an implementa-

tion of TinySDM on the TinyOS 2.1.2/TelosB platform.

We show that TinySDM allows fast and efficient deploy-

ment of new measurement tasks.

The rest of this paper is structured as follows. Section II

introduces the related work. Section III gives an overview of

TinySDM. Section IV presents the base program generation

in details. Section V describes the TinyCode Language in

details, illustrating its core features using examples. Section VI

shows the expressiveness of TCL using existing measurement

tasks. Section VII describes the implementation of TinySDM.

Section VIII evaluates the performance using real testbed

experiments. Section IX presents a discussion on TinySDM.

Finally, Section X concludes this paper and our future work.

II. RELATED WORK

The related works of TinySDM can be divided into the

following categories: measurement in sensor networks, dy-

namic instrumentation framework in sensor networks, software

defined architecture in sensor networks, and software defined

measurement in the Internet.

Measurement in sensor networks. In order to obtain the

internal behaviors of sensor networks, many measurement

approaches [5, 6, 8–11, 17–19] focusing on various aspects

have been proposed in the past years. In this paper, we

use TinySDM to implement four typical measurement tasks,

including, an end-to-end delay measurement approach E2EDM

[10], a path tracking approach PAD [5], a per-hop delay

measurement approach Domo [9], and a measurement-based

diagnosis approach Sympathy [6].

Traditional delay measurement relies on network synchro-

nization which may not be available in large scale sensor

networks. To tackle this problem, Wang et al. proposed an

end-to-end delay measurement method [10] based on the MAC

layer timestamping [20]. Through MAC layer timestamping,

the sojourn time of a packet at each node can be captured

accurately. By accumulating the packet sojourn times of each

node along its packet routing path, the end-to-end delay can be

obtained. Domo [9] is a more fine-grained delay measurement

method which achieves lightweight and accurate per-hop per-

packet delay measurement.

Besides the delay measurement approaches, there are also

approaches aiming at measuring packet routing path in sensor

networks. PAD [5] employs a packet marking scheme to record

a static routing path. Each passing packet carries one hop

information of the static path and the whole path can be

recovered after collecting multiple such packets.

Sympathy [6] is a typical debugging tool that actively

collects runtime network status from each node and analyzes

them at the sink. It collects information such as routing table,

neighbor list, traffic flow, and etc. The insight is that the failure

can be detected and localized by carefully selecting an optimal

set of metrics.

Different from these approaches, TinySDM is not a mea-

surement approach for a specific network metric, but is a

software defined measurement architecture which supports fast

and efficient task deployment, as well as easy customization

of different measurement tasks.



Dynamic instrumentation framework in sensor net-
works. Quanto [21] instruments OS system calls for tracing

power consumption of logical activities. Though Quanto mea-

sures energy usage in a fine-grained manner, it fails to support

the measurement tasks in a user-defined manner. In addition,

TinySDM provides more flexibility for measurement tasks,

which allows users to define the hook positions. Declarative

Tracepoints (DT) [22], which is a declarative framework for

debugging sensor networks, introduces TraceSQL to program

debugging actions as tracepoints and allows addition and

deletion of tracepoints at runtime. TinySDM has similar

goals to DT such as achieving application independence

and easy programming. However, TinySDM and DT are

different in the following ways. First, unlike DT, TinySDM

mainly focuses on sensor network measurement. TinySDM

provides a good separation of the measurement logic and the

remaining code (including the OS, protocol, and application)

by defining a set of carefully selected hooks. Therefore, users

can focus on the measurement task at hand, without having a

deep understanding of the underlying implementation details.

Second, TinySDM supports measurement tasks which involve

multiple sensor nodes, while DT focuses on node debugging.

For example, in order to measure end-to-end delay of a packet,

all nodes in the routing path of that packet should update the

packet to accumulate the packet sojourn times at these nodes

[10].

Software defined architecture in sensor networks. Ex-

isting proposals about software defined architecture in WSNs

aim at controlling the routing behavior. Sensor OpenFlow [23]

extends the OpenFlow approach — the most popular instance

of SDN, and offers a more flexible specification of the rules to

configure the routing policy. Unlike Sensor OpenFlow, SDN-

WISE [24] is a stateful SDN solution for WSNs. Different

from these approaches which focus on routing, TinySDM

focuses on providing a flexible measurement architecture for

sensor networks.

Software defined measurement in the Internet. OpenS-

ketch [25] separates the measurement data plane from the

control plane. In the data plane, OpenSketch provides a simple

three-stage pipeline (hashing, filtering, and counting), which

can be implemented with commodity switch components

and supports many measurement tasks. However, OpenSketch

focuses on estimating aggregate statistics (flow level) while

TinySDM is specifically designed for WSN measurements

which focus on both node level aggregate statistics and packet

level network behaviors.

TPP [26] is a simple, programmable interface that enables

endhosts to attach instructions into the packets to query

the switch memory directly in the data plane. Specifically,

these instructions are carried in the header of a subset

of packets. The operations include read, write, or perform

simple, protocol-agnostic computation using switch memory.

In TPP, both the instructions and the execution results are

encapsulated in the header of a packet. In TinySDM, only
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Fig. 1: Overview of TinySDM.

measurement results are encapsulated in a packet. The code for

a measurement task is disseminated to each node in a separate

phase. Hence, TinySDM is able to perform more complicated

tasks than TPP.

III. OVERVIEW

The TinySDM system aims to provide a general support for

conducting different measurement tasks. Figure 1 shows its

overall architecture. The procedure of TinySDM is separated

into two phases: initialization phase and measurement phase.

In the initialization phase, a modified version of the program

image is generated and programmed into all nodes in the

network. The modifications include the injection of a number

of hooks specified by a configuration file Hook.conf written

in TCL. In this paper, we refer to this modified version of

program image as the base program. Details about the base

program generation are given in Section IV.

In the measurement phase, a network operator can write a

customized measurement task in TCL and use the TinyCode

compiler to generate the measurement task binary. Then the

measurement task binary is embedded to a number of control

packets and sent to all nodes in the network. Details about the

TCL and the control packet generation are given in Section

V.

IV. BASE PROGRAM GENERATION

In the initialization phase, the base program is generated and

programmed into all nodes in the network. Figure 2 illustrates

the generation of the base program. The application and kernel

components are written in nesC (the language used in TinyOS)

and are compiled into C code (.c) by the nesC compiler. The

hook positions are specified in a configuration file (.conf). The

preprocessor then analyzes the configuration file to generate

a system jump table in assembly (.s) and inserts hooks into

the specified positions. The GCC toolchain further compiles

these files (.c and .s) using the compiler (cc) and assembler

(as). Finally, an executable ELF file is generated through a

two-phase linking process.
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A. Hook Configuration File

The configuration file consists of two types of statements:

hook statements and reserved packet memory statements. The

hook statements are used to specify the possible positions

where the users want to perform the measurement tasks.

The reserved packet memory statements are used to reserve

memory in the data packets for collecting the measurement

data. Specifically, a hook is located by a pair consisting

of a function name and a file name. By default, the

hook locates at the beginning of the function. Additional

keywords, START and END, can be used to specify the

exact address of where to perform the measurement task.

The default name of a hook is unique and follows the

rule: HOOK_$FileName_$FunctionName. $FileName
(resp. $FunctionName) represents the value of the variable

FileName (resp. FunctionName). For special symbol in

the function name (e.g., ‘.’ in the function name under

TinyOS), it will be replaced by an underscore (i.e., symbol

‘ ’).

With the keyword AS, the hook can be given an alias.

To reserve packet memory, the packet type and the reserved

size should be specified with the keyword RESERVE. As

an example, the following code shows how to configure

a hook that performs the measurement task every time

the packet is forwarded and how to reserve 20 bytes in

the packet type TestSDMMsg to record the measurement

data. In this example, the default name of the hook

is HOOK_CtpForwardingEngineP_SubReceive
_receive. This hook is positioned at the beginning

of function SubReceive.receive() from the file

CtpForwardingEngineP.nc. Starting with keyword

HOOKPOS, the following example shows how to set the

hook configuration and the reserved space size in a specific

packet type.

HOOKPOS SubReceive.receive() START
FROM CtpForwardingEngineP.nc
AS HookCtpReceive;
RESERVE TestSDMMsg packetsize=20;

We develop a tool, gbc, to integrate the operations of

preprocessor and GCC toolchain in the initialization phase.

B. Hook Positions

We reserve default hook positions in the configuration

file (Hook.conf). The user can also customize other hook

positions according to measurement requirements. In order to

make the reserved hook positions be expressive enough to

support most measurement tasks, we carefully analyze typical

measurement tasks in sensor networks. Existing measurement

tasks can be divided into the following two categories.

(1) Tasks that query runtime network status: These

measurement tasks actively query runtime network status on

the node side. For example, Sympathy [6] measures various

network metrics including connectivity metrics, flow metrics

and node metrics. We reserve the hook positions where we

can compute and retrieve these metrics.

(2) Tasks that require per-packet computation: WSNs

are usually multi-hop networks. In order to obtain pack-

et level information, many existing measurement tasks in

sensor networks need to modify the packet at multiple

forwarding nodes, e.g., end-to-end delay measurement and

routing path measurement. This information can be obtained

at the forwarding time. Thus, we also reserve hooks in the

routing/forwarding services provided by the node operating

system.

V. TCL PROGRAMS

In the measurement phase, a network operator can write a

customized measurement task in TCL and use the TinyCode

compiler to compile it. Then the measurement task binary is

embedded to a number of control packets and sent to all nodes

in the network. In this section, we will first describe the whole

measurement phase briefly, and then focus on describing the

TCL program in details.

A. Measurement Phase Overview

In the measurement phase, user customizes the measure-

ment tasks and deploys them through control packets. Figure 3

shows the generation of the control packet. The programs of

measurement tasks (.tc) are written in TCL. The TinyCode

compiler translates the user programs from TCL into C with

equivalent semantics. The C file is further processed by the

GCC compiler to generate the object file (.o). Using the

tool (relocate) we developed, the binary file (.ihex) of the

measurement task is generated. We develop a tool SendPkt

(.java) to generate the control packets and disseminate them



Table 1: Overview of TinyCode Language Keywords

TinyCode Language Overview
File types Statement types Keywords Description

Configuration file Configuration statements HOOKPOS, START, END, RESERVE
Configure the hook positions
and reserve packet memory.

Measurement task file

Paket declarations statements ALLOC
Allocate space to additional fields
from the packet space reserved.

AS Assign an alias.

Variable declarations statements INTEGER 8,INTEGER 16,INTEGER 32,
Declare TCL variables.

STRUCT,EXTERN

HOOK declarations statements
HOOK

The basic format is:
HOOK HookName{}.

IF, ELSE, ELSE IF General condition statements.
EXIT Exit the current executing task.

TERMINATE Terminate the specified task.

Built-in functions GetTimeNow() Obtain the current execution time.

Find(arrayName, fieldName, value)
Search for the item in arrayName
whose fieldName equals to value.

translator
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Fig. 3: The generation of the control packet.

to each node. To facilitate the usage, we develop a tool, gtc,

to integrate these operations.

B. TCL Program Example

In the rest of this section, we focus on describing TCL in

details. Table 1 shows the TCL keywords, including the ones

used in both the configuration file and the measurement task

file. Then we use an example to describe the TCL.

In this example, we describe the implementation of the delay

measurement approach [10]. It measures the end-to-end packet

delay based on the MAC layer time stamping [20]. A packet is

timestamped when it is being transmitted and received. With

an additional field in packet for recording, the delay can be

calculated by accumulating sojourn time (i.e. node delay) at

each node.

In the initialization phase, we implement an application

TestSDM. We define the packet type as a structure named

TestSDMMsg. In the measurement phase, the TCL program

of our implementation is illustrated in Figure 4. This example

demonstrates the use of packet configurations, hook declara-

1 ALLOC TestSDMMsg{
2 INTEGER_32 delaysum;
3 INTEGER_32 timestamp;
4 } AS T;

5 HOOK HOOK_CC2420TansmitP_receive{
6 INTEGER_32 receiveTime;
7 //The receiving time of the packet.
8 receiveTime = getTimeNow();
9 T:timestamp = receiveTime;
10 }

11 HOOK HOOK_CC2420TransmitP_send{
12 INTEGER_32 sendTime;
13 INTEGER_32 hopdelay;
14 //The sending or forwarding time of the packet.
15 sendTime = getTimeNow();
16 hopdelay = sendTime - T:timestamp;
17 T:delaysum = T:delaysum + hopdelay;
18 }

Fig. 4: TCL example for end-to-end delay measurement

tions and associated operations. The measurement task starts

with the declaration of two new fields in the packet structure

for delay measurement. The variable delaysum is the sum

of hop delays along the routing path, while timestamp is

the packet reception time at the current hop. The task body

consists of two simple processing functions at different hook

positions. The first hook is located at the function where

packets are received in the MAC layer. When a packet is

received, the associated function of this hook records the

receiving time into the packet. Here, GetTimeNow() is a

built-in function which is used to obtain the current execution

time. The second hook is located at the function where the

packet is forwarded. At this hook position, the associated

function obtains the forwarding time and computes the sojourn

time at the current node. Then, this sojourn time is added to

the sum of delays delaysum in the packet. Finally at the

sink, the end-to-end delay of each packet can be obtained by

reading the delay field from the packet, which records the sum

of the delays before the last hop.



C. Program Structure

The TCL programs consist of three types of statements:

message configuration statements, variable declaration state-

ments, and hook declaration statements. The example in Table

2 shows these three types of statements.

1) Packet configuration statements: These statements con-

figure the structure of the payload field in a packet. As

shown in line 1 to line 4 of the end-to-end delay example,

two fields delaysum and timestamp are allocated to

the message type TestSDMMsg from the reserved packet

space using the keyword ALLOC. The keyword AS is

used to give the message type an alias to facilitate its

reference in the following program. For example, in line 9,

T:timetamp is used to address the packet memory instead

of TestSDMMsg:timestamp.

2) Variable declaration statements: Variables are declared

by specifying the variable types and names. As shown in line

6, 12 and 13, three integer variables are declared. In order to

provide more flexible manipulation to both the packet memory

and the node memory, we support three types of integer

with different length, as well as the STRUCT to support the

structure variable.

The local variable is declared within the hook, while the

global variable is declared beyond all hooks. The scope

of the global variable is the entire program. If the global

variable used in the TCL programs is referenced to the exiting

global variables on node, the keyword EXTERN is used. For

example, in TestSDM, each node is assigned a node ID whose

value is stored in the global variable TOS_NODE_ID. If the

TCL program needs to obtain the node ID, the following

declaration should be added at the beginning:

EXTERN INTEGER_16 TOS_NODE_ID;

3) Hook declaration statements: Hook declaration state-

ments are the key functional components of a program starting

with a HOOK keyword. Each statement consists of two parts,

hook name and TCL operations. The hook name indicates

the position of this hook as described in Section IV-A. The

TCL operation indicates the operation to be conducted at

the specified hook position. One or more hooks can be

declared to complete one measurement task cooperatively.

Each measurement task is described by a single file, which is

first compiled as binary codes and then loaded and executed

by nodes.

D. TCL Operations

TCL operations indicate the operations to be conducted

at the specified hook positions. According to the objects

being operated, the TCL operations can be divided into

three categories: operations on packet memory, operations on

the global variables declared in the measurement task, and

operations on the existing global variables declared in the base

program.

First, a TCL operation can access the packet memory. Many

measurement tasks need to record or encode information of

the current hop into the data packet and pass it to the next

hop. To perform these operations, TCL supports the access to

the packet memory through the structured address described

in Section V-C. As shown in line 17 of the example shown

in Figure 4, a TCL operation can read and write the field

delaysum in the packet memory.

Second, a TCL operation can operate on the global

variables declared in TCL programs. For example, in order

to measure the number of packets transmitted by each node,

we can write the TCL program as follows. A global variable

counterPktTrans is declared to count the number of

packets transmitted. The task consists of two hooks. The

first one in the packet forwarding function is responsible

for increasing the counter each time a packet is forwarded.

The second hook in the packet generation function writes the

counter into the packet.

ALLOC TestSDMMsg{
INTEGER_16 counter;

} AS T;
INTEGER_16 counterPktTrans;

HOOK HOOK_CtpForwardingEngineP_forward{
counterPktTrans++;
}

HOOK HOOK_TestSDMMsgC_sendMessage{
T:counter = counterPktTrans;
}

Finally, TCL operations can directly read existing

global variables/constants on nodes. For example, the

TOS_NODE_ID is an existing constant storing the current

node ID. A task for path measurement could directly access

it and write its value into the packet.

To further facilitate programming using TCL, TCL also

provides two built-in functions, Find and GetTimeNow.

The method Find(arrayName, fieldName, value)
has three parameters, arrayName representing the name

of an array of structures, fieldName representing the

name of the field of interest, and value representing

the value to find. The function returns a pointer which

points to the matched structures. For example, the function

call Find(routingTable, "neighbor", 5) returns

a pointer which points to the first structure with its field

“neighbor” equals to 5, in the array routingTable. The

Find function is preprocessed since the C language cannot

perform field name matching directly.

VI. CASE STUDIES

We demonstrate the expressiveness of TinySDM and TCL

by complementing several recent measurement tasks using

TCL. Note that the potential expressiveness of TCL is far from

exhaustively covered. The analysis shows that the overhead is

acceptably small. We will discuss the following measurement

tasks: (i) the path measurement method described in PAD,



(ii) the delay measurement method, Domo, (iii) the metric

collecting process in Sympathy.

A. PAD

PAD is a passive diagnosis approach that explores the root

causes of exceptions in a running sensor network. On the

node side, it employs a packet marking scheme to dynamically

reconstruct the network topology. On the sink side, it employs

an inference model to infer the possible root causes. We

implement the packet marking scheme with the application

TestSDM implemented in TinyOS 2.1.2 and reconstruct the

network topology.

During the packet delivery, only one selected sensor node

marks its ID and updates the hop count field based on a set of

rules. We first configure the packet structure. As the following

code illustrated, two additional fields pass node ID and hop
count are added for recording measurement data. When the

source node generates a new data packet, it leaves the pass
node ID field empty and the hop count initially to be zero.

ALLOC TestSDMMsg{
INTEGER_16 passNodeID;
INTEGER_16 hopCount;

} AS T;

Each node maintains a buffer for its down-stream source

nodes. The buffer entry is defined as follows. It consists of

the source node ID and the sequence number of the recently

received packet from the source.

STRUCT BUFFER_Entry {
INTEGER_16 src;
INTEGER_16 seqNo;

} BUFFER_Entry;
BUFFER_Entry pkt_table [MAX_BUFFER_ENTRY];

The marking associated operations are put in the hook

located at the receiving function.

HOOK HOOK_CtpForwardEngineP_SUBRECEIVE_RECEIVE{
BUFFER_Entry item;
IF(T:passNodeID != NULL){

EXIT;
}
item=Find(pkt_table, "src", T:source);
IF(item == NULL){

T:passNodeID = TOS_NODE_ID;
item=Find(pkt_table, "src", NULL);
item->src = T:source;
item->seqNo = T:seqno;

}
ELSE{

IF(item->seqNo+1 == T:seqno){
item->seqNo = item->seqNo+1;
T:hopCount = T:hopCount+1;

}
ELSE{

T:passNodeID = TOS_NODE_ID;
item->seqNo = T:seqno;

}
}

}

When receiving a packet, the node checks whether it is

marked. If yes, it exits the task. Otherwise, it checks its

buffer to see whether there is a packet marked with the same

source node. If there is no entry, the packet is marked and

the source node ID is recorded into the buffer, as well as

the sequence number. Otherwise, if the sequence number is

consecutive, node updates the corresponding sequence number.

If the sequence number is not consecutive, the packet is

marked and the buffer entry is updated.

Overheads: We use the lines of code written by user as

the metric to show the simplicity of TCL. In this particular

case, the lines of code written in TCL is 32 while a total

of 57 lines code is needed in C code. We also evaluate the

transmission overhead which consists of the task dissemination

overhead and the measurement data collection overhead. The

control packets actually being disseminated are composed of

the hook ID, load address and executable binary codes. In the

above implementation, the control packets have a total size of

286 bytes. To collect the measurement data, TinySDM adds

only 4 bytes to each data packet.

B. Domo

Domo is a delay measurement method that achieves

lightweight and accurate per-hop per-packet delay reconstruc-

tion in WSNs. In Domo, each packet carries a sum-of-delay

value which is the sum of sojourn times of a set of packets.

These packets are sent/forwarded by the source node of p and

are between packet p and its previous packet with the same

source node. We establish an inequation for this constraint by

finding packets that must be included in the calculation of

sum-of-delay. Thus the implementation needs to modify the

packet fields as well as computing the sum-of-delay on the

node side.

As the following TCL program illustrated, the global

variable sum_of_delay is used as a buffer to store the sum

of node delays.

ALLOC TestSDMMsg{
INTEGER_32 sum_of_delay;
INTEGER_32 timestamp;

} AS T;
//The buffer to store the sum of node delays.
INTEGER_32 sum_of_delay = 0;
EXTERN INTEGER_16 TOS_NODE_ID;
HOOK HOOK_CC2420ReceiveP_receive{

INTEGER_32 receiveTime;
receiveTime = getTimeNow();
T:timestamp = receiveTime;

}
HOOK HOOK_CC2420TransmitP_send{

INTEGER_32 sendTime;
INTEGER_32 hopdelay;
sendTime = getTimeNow();
hopdelay = sendTime - T:timestamp
sum_of_delay = sum_of_delay + hopdelay ;
IF (T:sourcenode == TOS_NODE_ID){

T:sum_of_delay = sum_of_delay;
sum_of_delay = 0;

}
}



Table 2: Expression by TCL.

Metric Expression

Routing table
Hook position: In the packet generation
function at the source node.
Hook operations: Read the specific table
data structure and put into the reserved
space in each packet.

Neighbor list Similar to the previous one. Read the
neighbor list into the packet at the source
node.

Packets transmitted
Hook positions: The first one is in the packet
forward function, the second one is in the
packet generation function.
Hook operations: The first hook is respon-
sible for declaring a counter and increasing
the counter every time the hook is reached.
The second hook is responsible for reading
the counter into packet.

Sink packets received Only need to implement at the sink side
with a counter to count the received packets.

Sink last timestamp Only need to implement at the sink side.

Node uptime Obtain the time at the packet genera-
tion function using the built-in function
GetTimeNow() and record it into the
packet.

Bad packets received Insert the hook into the CRC check
function. Declare a counter and increase
each time the CRC failed.

Similar to end-to-end delay measurement described in the

previous section, we use two cooperated hooks to compute

the packet sojourn time on a node. The first hook locates at

the packet receive function in the MAC layer, while the second

locates at the packet send function. The buffer is updated by

adding the sojourn time of the new packet in the second hook.

If the packet being transmitted is a local one, the sum of

delays in the buffer will be written into the packet and then

be cleaned.

Overheads: To implement Domo, a total of 22 lines of code

is needed in TCL, while 66 lines of code in C. In this case, the

size of the measurement task binary to be disseminated is 652

bytes and the additional overhead for collecting measurement

data is 8 bytes in each data packet.

C. Sympathy

Sympathy is a detecting and debugging tool designed for

data collection applications in sensor networks. The insight

is that the failure can be detected and localized by collecting

and analyzing a minimal set of metrics. It localizes the failure

to one of the three possible causes: the node itself, the

transmitting path, or the sink. Sympathy consists of metric

collection on the node side and failure diagnosis on the

sink side. We implement the metric collection subsystem on

the node side. We summarize typical metrics collected by

Sympathy and how they could be expressed by TCL in Table

2.

VII. IMPLEMENTATION

We implement TinySDM on the TinyOS 2.1.2/TelosB plat-

form. In TinySDM, we implement a measurement component

TinyCode
Binary1Hook1

...

Hook2

Hookn

...

...

br Address1
br Address2

br Addressn

...

...

TinyCode
Binary2

TinyCode
Binaryn

Jump TableBase Program

Fig. 5: The redirection scheme of the jump table.

to provide the control of measurement tasks at each node. The

measurement component consists of an agent, a jump table

and the measurement task binary. The agent is responsible for

analyzing the control packets and performing corresponding

operations, such as load measurement code to RAM or

terminate an existing task. Both of these operations will result

in a modification to the jump table which is also performed by

the agent. In this section, we first describe the measurement

component implementation in detail. Then we will describe

how TinySDM disseminates the measurement task binaries to

all nodes in a reliable and consistent manner.

A. Jump Table

The jump table is placed at a fixed location in the RAM

and can be updated dynamically. For each hook, we allocate

an entry in the jump table. Each entry contains a branch

instruction which can direct the instruction flow to the

corresponding measurement task binary. The jump table is

automatically generated according to the hook configuration

file in the initialization phase. Initially, each entry contains

only a return instruction without any other operation. The

redirect scheme is illustrated in Figure 5. When a hook is

reached, the instruction flow is directed from the base program

to the corresponding entry in the jump table. Then the branch

instruction in that entry redirects the instruction flow to the

memory address of the associated task. Once the execution

is finished, the instruction flow returns to the base program

and resumes execution. This process can be viewed that the

program reached a mini context switch at each hook.

B. Memory Layout

In the current implementation, we focus on the TelosB

sensor node. In the discussion section, we will discuss how

to port TinySDM to other platforms. A TelosB node provides

48KB program memory (0x4000-0xFFFF) and 10KB RAM

(0x1100-0x38FF).

In TinyOS, the nesC code is compiled into C code by the

nesC compiler. The C code is then compiled and linked into

an executable file (ELF) by the GCC toolchain. Since TinyOS

uses a simple binary file format (.ihex) for transferring and

loading, the ELF file is further transformed into a simplified
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Fig. 6: Memory layout in RAM and the program flash. (a) Memory layout for TinyOS. (b) Memory layout in RAM
after the first phase of linking. (c) Memory layout in RAM after the second phase of linking.

format. This loadable binary file is stored in the external flash

of sensor nodes and can be loaded onto the specified program

memory address, including the .text section, .data section

and .vector section. When the code execution starts, the

initializer (usually located at 0x4000) initializes the .data
section and the .bss section in RAM. Figure 6a illustrates

the memory layout on the TelosB platform after this process.

In TinySDM, three additional sections are added in the

RAM, the .vdata section for global variables, the .jmptab
section for the jump table and .tinycode section for

measurement task binaries. We put the .jmptab section and

the .tinycode section in the RAM instead of the program

flash since they are changing frequently.

Having the efficient utilization of memory in mind, we

carefully organize these sections as shown in Figure 6c. First,

the .jmptab section is placed directly after the .bss section

and the address is fixed during the runtime. The size of jump

table is determined by the configuration file which is also fixed.

Second, the .vdata section is placed after the .jmptab
section. Note that the .vdata section has a fixed size which

is reserved for possible use of global variable in the future.

Third, the .tinycode section directly follows the .vdata
section.

In TinySDM, we use a two-phase linking process to

determine the base address of each section so that these

sections can be placed compactly and memory can be more

efficiently used. In the first phase, we specify non-conflict base

addresses to the linker as follows:

START.jmptab = ENDRAM −SIZE.jmptab

START.vdata = START.jmptab −SIZE.vdata

where SIZE.jmptab and SIZE.vdata are known after compilation.

Figure 6b illustrates the memory layout in RAM after this

linking phase. Then we use them to determine the final base

addresses:

START.jmptab = END.bss

START.vdata = START.jmptab +SIZE.jmptab

START.tinycode = START.vdata +SIZE.vdata

Figure 6c illustrates the final memory layout after the two-

phase linking process. Note that it is also possible to use

a linker script to place these sections in a compact manner,

which is considered as future work.

C. Tiny Code Dissemination

In TinySDM, measurement tasks are programmed in TCL

at the PC side by the user. The TCL programs are compiled

into binaries by the TinyCode compiler. Then the measurement

task binaries are disseminated to all nodes in the network.

We employ the dissemination protocol described in R3 [13]

which is based on Deluge [12]. In Deluge, it transmits the

entire page (1,104 bytes) even when the data size is far smaller

than the page size. Since the size of the measurement task

binary is usually small, we use the optimized version of Deluge

described in R3 for reliable data dissemination.

In TinySDM, multiple nodes may be involved in the

same measurement task, e.g., end-to-end delay measurement.

Therefore, it is important that every node in the network

is conducting the same version of measurement task. In

TinySDM, we employ a version control strategy through

keeping a version number both at the sink side and the node

side. Each time a new task is deployed or an old one is

terminated, the version number increases by 1. At the node

side, the version number is piggybacked every time when a

new packet is generated. At the sink side, when a packet is

received, the sink checks whether the version number in the

packet is consistent with the one the sink keeps. If a mismatch

is detected by the sink, the sink will retransmit the control

packets carrying the measurement task binaries.

VIII. EVALUATION

In Section VI, we have shown the expressiveness of TCL. In

this section, we focus on evaluating the deployment efficiency



and the overhead of TinySDM. For deployment efficiency, the

main metric is the completion time of disseminating control

packets to update a measurement task. Since the size of

disseminated data is a key impact factor of the completion

time, we also evaluate the sizes of the disseminated data

using TinySDM as well as two reprogramming approaches.

For overhead, we focus on the CPU and memory overhead of

TinySDM. The CPU overhead represents the runtime overhead

of TinySDM, and the memory overhead includes the ROM and

RAM overhead of TinySDM.

As described in the previous section, we implement four

typical measurement approaches on our TinySDM system. The

four approaches are End-to-End delay measurement, PAD,

Domo and Sympathy. For comparison, we also implement

them directly without TinySDM. Reprogramming approaches

are employed under this circumstance for task deployment.

A. Experiment Setup

The experiments are conducted in a testbed of 60 TelosB

nodes. The 60 nodes are arranged in a grid with 0.8m

separation between adjacent nodes. The sink node is located

at the center. The nodes are running operating system

TinyOS 2.1.2. The PC platform of the base station is Ubuntu

13.10 with 2.3GHz quad-core CPU and 4GB memory. For

the base program, we implement TestSDM based on the

TestNetwork application which includes many TinyOS

services such as the collection tree protocol CTP [27] and

the optimized version of Deluge described in R3 [13].

B. Deployment Efficiency

To show the efficiency of task updating in TinySDM,

we evaluate the completion time of the control packets

dissemination. Figure 7 shows the result of disseminating the

binary codes of PAD. Since in WSNs, the transmission power

level is closely related to the dissemination performance. We

evaluate the impact of transmission power on the completion

time of control packets in TinySDM. We set three different

transmit power levels: “Low” represents −23dBm, “Medium”

represents −20dBm, and “High” represents −10dBm. As

shown in Figure 7, the completion time decreases as the power

increases, and 90% of the nodes successfully received the

control packets in less than 30s.

Since the size of the disseminated data is the key impact

factor to the completion time, we also reports the size of the

disseminated data. In TinySDM, the disseminated data is the

control packets including the new measurement task binary.

We also used two reprogramming protocols, Deluge [12] and

R3 [13], to compare their performance to TinySDM. Deluge

is the standard reprogramming protocol, while R3 is the most

recent incremental reprogramming approach in WSNs. Table 3

shows the size of the disseminated data for deploying four

different measurement tasks. From the table, we can see that

TinySDM significantly reduces the size of the disseminated

data for a task deployment.
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Fig. 7: The completion time of control packets in TinySDM
with different level of transmission power.

Table 3: The sizes of disseminated data using three
approaches (in bytes).

Deluge R3 TinySDM

E2E 41232 8884 612

PAD 39024 2794 280

Domo 40128 8886 646

Sympathy 41232 5409 552

C. TinySDM Overhead

CPU overhead. We use CPU cycle consumption to measure

the runtime overhead. In TinySDM, hooks are inserted into the

system codes or application codes which are further compiled

into a single image. All hooks are initially empty as there is

no task attaching to them. When a new measurement task

is deployed, it is attached to corresponding hooks. When

the hook is reached, the corresponding binary code snippets

are executed, i.e., the corresponding hook operations are

performed.

We evaluate the CPU cycle consumption of both the empty

hooks and the hook operations. We identify that each empty

hook consumes 22 CPU cycles. The item in the jump table

corresponding to an empty hook contains a return instruction.

This will cause the instruction flow to return back to the base

program without doing anything. Thus, the overhead of adding

multiple hooks is usually tolerable.

The cost of hook operations is dominated by the memory

access latency. To evaluate the CPU consumption when oper-

ations are performed, we measured three kind of operations:

when the hook operation is to read a 16-bit memory variable,

when it is to write a 16-bit memory variable, when it is to

write a 16-bit variable into the packet memory. On average,

the read operation on node memory variable costs 10 CPU

cycles, the write operation on node memory variable costs 13

CPU cycles, and the write operation on packet memory costs

15 CPU cycles.

Memory Overhead. The memory overhead includes the

program memory overhead and the RAM overhead.

The program binary size is the size of base program
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Fig. 8: The program size of base program in TinySDM
and four cases implemented without TinySDM.

in TinySDM and remains the same during the runtime. In

TinySDM, the program binary size increases due to the agent

code, the jump table and the inserted hooks. We evaluate the

program binary size after implementing TinySDM, i.e., the

size of the base program. For comparison, we also evaluate

the program binary size after implementing four example

cases without TinySDM. As mentioned in the evaluation setup

subsection, all the five approaches are implemented based

on the TestNetwork application in TinyOS. Therefore,

we report the overhead by subtracting the program memory

consumptions of the five approaches by the program memory

consumption of TestNetwork itself.

Figure 8 shows the results. E2EDM in the figure repre-

sents the end-to-end delay measurement case. The program

memory overhead of TinySDM is about 3.4KB. The program

memory overheads of four measurement tasks are smaller than

TinySDM. However, the base program in TinySDM is able to

support each of these four measurement tasks, as well as many

other measurement tasks. Considering the benefit of TinySDM

in term of easy customization and efficient deployment, the

program memory overhead is acceptable.

The RAM consumption is shown in Figure 9. We show

the statically allocated RAM of the four cases both with

and without TinySDM. We can see that using TinySDM

needs about 1KB more RAM compared with the direct

implementation without TinySDM. This mainly due to the

jump table and binary codes of the measurement task.

IX. DISCUSSION

In Section VII we present the implementation details of

TinySDM on TinyOS/TelosB platform. In this section, we

further discuss how to extend TinySDM to other platforms, as

well as how to achieve a good balance of easy programming

and measurement ability.

Extension to other platforms. We currently implement

TinySDM in the TinyOS/Tmote platform. However, its princi-

ples can also be extended to other platforms. For example,

in order to port TinySDM to Contiki OS [28], there are
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Fig. 9: The RAM consumption of four cases implement
with TinySDM and without TinySDM.

two main modifications which should be conducted. First,

the default hook positions in the initialization phase should

be reconfigured according to the implementation of Contiki

OS, as well as the base program generation. Second, the

dissemination procedure of the binary code of measurement

tasks should be implemented based on the dissemination

protocol in Contiki. TinySDM can also be ported to Mica

nodes. Since Mica nodes use Atmega128L controller which

is based on the Harvard architecture, TinySDM can be

implemented by placing the binary code of measurement tasks

into the flash instead of RAM. The main goal of TinySDM

is to provide the general measurement architecture to support

many measurement tasks. When TinySDM is implemented in

different platforms, the network operator can focus on the

measurement task design, without a deep understanding of the

platform-dependent implementation details.

Tradeoff between easy programming and measurement
ability. In TinySDM, we provide a set of default hook posi-

tions based on a careful analysis about typical measurement

tasks. A network operator can also customize its own hook

positions to support more measurement tasks. By this design,

a measurement task can be easily programmed since the

network operator does not need a deep understanding about

the application details. However, the measurement ability is

limited by the hook positions.

Dynamic instrumentation [29] allows a network operator

to add new hooks after network deployment, which provides

a higher measurement ability. By this design, a measurement

task can be easily programmed since the network operator does

not need to understand the application in detail. Therefore,

there is a tradeoff between easy programming and measure-

ment ability. In TinySDM, we focus on easy programming.

We show that the default hook positions are sufficient to

implement many measurement tasks in sensor networks. If a

network operator wants to add a measurement task which is

not supported by the existing hooks, the operator can still use

dynamic instrumentation techniques to add new hooks, which

is considered as future work.



X. CONCLUSION

This paper proposes a software defined measurement

architecture called TinySDM, which allows easy programming

and supports multiple measurement tasks. TinySDM facilitates

the development of measurement task by providing a C-like

language called TinyCode Language (TCL). It reduces the task

deployment time significantly since it only needs to transfer

the binary code of measurement tasks. It also avoids the cost of

node reboot since it enables adding and deleting measurement

tasks at runtime. We describe the design and implementation

of TinySDM on top of the TinyOS/TelosB platform. We

demonstrate the expressiveness of TCL by describing the

implementation of four measurement tasks in the literature,

including end-to-end delay measurement, PAD, Domo, and

Sympathy. We evaluate its performance in real testbed and

the results show that TinySDM is general, efficient and easily

programmable.

There are multiple directions of future work. For example,

we would like to port TinySDM to other embedded platforms

and OS. We would also like to implement more measurement

tasks using TinySDM.
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